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ABSTRACT

The Tropical Rainfall Measuring Mission (TRMM) satellite, a joint US-

Japanese mission to explore tropical rainfall and its effects on the earth's energy

budget, general circulation, and climate, represents the first dual deployment of a

precipitation radar and passive microwave radiometer on an earth-viewing

satellite. While both radiometers and radars have been widely used independently

to retrieve rainfall, previous attempts to combine the two types of measurements

have mostly maintained independent treatment of the data, as these instruments

are designed to measure precipitation based on different physical principles.

A method has been developed which objectively combines the

measurements within the context of a unified radiative transfer equation (RTE)

model, by treating the radar as a radiation source within the RTE model's source

function. The retrieval method, referred to as "tall vector" inversion, uses a

physical inversion scheme which initially searches a cloud-radiation database of

profiles, produced by a 3-dimensional non-hydrostatic cloud model simulation of

a tropical storm, to find first guess hydrometeor profiles whose brightness

temperatures (TBs) and reflectivities (Zs) best match the radiometer and radar

measurements as determined by a combined normalized error function. The first

guess profiles, expressed in terms of structure functions, are modified within a
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steepest descent optimization scheme, using the structure function coefficients as

the optimization control variables, until the error function cannot be reduced.

The solution hydrometeor profiles are then subjected to a set of gravity fallout

equations to calculate the surface rainfall rates. Precipitation type is also

diagnosed from an algorithm using TB threshold tests in conjunction with radar-

derived bright band information.

As measurements from the TRMM sensors are not yet available,

measurements from similar aircraft prototype instruments deployed for the

TOGA-COARE field experiment are used in the evaluation of the algorithm. A

statistical analysis of the TOGA-COARE retrieval results found that the

optimization improved the average agreement between the measured and first

guess TBs and Zs by approximately 20%. Also the determination of the

precipitation type matched independent observations for specific test cases, and

in a bulk statistical sense was consistent with observations and theoretical

considerations. The combination of the TB and Z measurements reduce

weaknesses inherent to single instrument retrievals, by reduction of the vertical

non-uniqueness problems inherent to passive-only retrievals, and reduction of

the sensitivity to microphysical assumptions inherent to radar-only retrievals.

These and other features discussed within this study indicate the potential of

combined retrieval, namely that a merged inversion algorithm is greater than the

sum of its parts.
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ABSTRACT

The Tropical Rainfall Measuring Mission (TRMM) satellite, a joint US-

Japanese mission to explore tropical rainfall and its effects on the earth's

energy budget, general circulation, and climate, represents the first dual

deployment of a precipitation radar and passive microwave radiometer on an

earth-viewing satellite. While both radiometers and radars have been widely

used independently to retrieve rainfall, previous attempts to combine the two

types of measurements have mostly maintained independent treatment of

the data, as these instruments are designed to measure precipitation based on

different physical principles.

A method has been developed which objectively combines the

measurements within the context of a unified radiative transfer equation

(RTE) model, by treating the radar as a radiation source within the RTE

model's source function. The retrieval method, referred to as "tall vector"

inversion, uses a physical inversion scheme which initially searches a cloud-

radiation database of profiles, produced by a 3-dimensional non-hydrostatic

cloud model simulation of a tropical storm, to find first guess hydrometeor

profiles whose brightness temperatures (TBs) and reflectivities (Zs) best match

the radiometer and radar measurements as determined by a combined

normalized error function. The first guess profiles, expressed in terms of

structure functions, are modified within a steepest descent optimization

scheme, using the structure function coefficients as the optimization control

variables, until the error function cannot be reduced. The solution

hydrometeor profiles are then subjected to a set of gravity fallout equations to
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calculate the surface rainfall rates. Precipitation type is also diagnosed from

an algorithm using TB threshold tests in conjunction with radar-derived

bright band information.

As measurements from the TRMM sensors are not yet available,

measurements from similar aircraft prototype instruments deployed for the

TOGA-COARE field experiment are used in the evaluation of the algorithm.

A statistical analysis of the TOGA-COARE retrieval results found that the

optimization improved the average agreement between the measured and

first guess TBs and Zs by approximately 20%. Also the determination of the

precipitation type matched independent observations for specific test cases,

and in a bulk statistical sense was consistent with observations and theoretical

considerations. The combination of the TB and Z measurements reduce

weaknesses inherent to single instrument retrievals, by reduction of the

vertical non-uniqueness problems inherent to passive-only retrievals, and

reduction of the sensitivity to microphysical assumptions inherent to radar-

only retrievals. These and other features discussed within this study indicate

the potential of combined retrieval, namely that a merged inversion

algorithm is greater than the sum of its parts.
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CHAPTER 1

INTRODUCTION

Remote sensing of rainfall over the last few decades has primarily been

restricted to techniques employing two types of instruments: ground-based

active radars, and satellite-based passive radiometers of either the visible-

infrared (VIS-IR) or passive microwave (PMW) type. A synopsis and brief

history of both types of techniques are offered, followed by a discussion of

how the strengths of these different methods can be merged within a new

type of combined radar-radiometer retrieval that is being developed for the

soon to be launched Tropical Rainfall Measuring Mission (TRMM) satellite,

which will deploy both a non-coherent single-frequency (13.8 GHz) cross-track

scanning precipitation radar along with a five-frequency conically scanning

PMW radiometer, as described in Simpson et al. (1988, 1996).

1.1 Radar Methods

Prior to the entry of the U.S. into World War II in 1941, research and

development had already begun on radar systems to detect and track aircraft.

In addition to aircraft, these radars also detected rain drops in the atmosphere.

Whereas this may have been an irritant to some radar operators interested

only in aircraft, this was a boon to meteorologists -- and so radar meteorology

was born.

Through a combination of theory and experimentation in the laboratory

and in the field, Marshall et al. (1947) devised a method to determine
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raindrop size distributions and relations between radar received power,

reflectivity, and ultimately the surface rainfall rate. These experiments were

analyzed and results reported by Marshall and Palmer (1948). The

relationship between radar reflectivity (Z) and surface rainfall rate (R) was fit

to an equation of the following form, consequently referred to as a Z-R

relation:

Z = a Rb, (1)

where a and b are the constants of regression. This study produced the now

famous Marshall-Palmer Z-R relation of

Z = 220 R1 _6  (2)

which is today still used as the standard Z-R relation for stratiform rain. Early

parallel work was also conducted by Wexler (1947, 1948).

Since then, many improvements have been made on the technique,

such as an adjustment to account for large errors of the Marshall-Palmer

distribution at small diameters [Wexler and Atlas (1963)]. However the

general form of the Z-R relation has remained unchanged. Various

researchers have shown that the coefficients of Z-R relations vary

significantly between rain types (convective, stratiform, orographic) and

geographic location, such as Fujiwara (1965) and Stout and Mueller (1968).

Numerous examples are tabulated and presented by Battan (1973).

The power returned from atmospheric scatterers is inversely

proportional to the fourth power of the wavelength, as expressed by Rayleigh

scattering theory [see Liou (1980)]. Therefore in order to achieve greater

sensitivity, one method of seeking higher power returns is to use shorter

wavelength radars. The disadvantage of this approach is that by decreasing

the radar wavelength, the signal becomes increasingly attenuated by the rain
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particles themselves. Hence methods designed to correct for this loss of signal

due to attenuation have been employed in conjunction with radar retrievals

at attenuating wavelengths. Hitschfeld and Bordan (1954) showed that large

errors may result in this attenuation correction unless the radar constant and

the atmospheric parameters, such as drop size distribution (DSD), are

specified with a high degree of accuracy. Due to the difficulty of achieving

such accuracy, rain measurements at attenuating wavelengths have generally

been avoided for ground-based radars. However for space-borne radars such

as to be used on TRMM, the constraint of small antennas, coupled with the

desire of high resolution, has necessitated the use of shorter, attenuating

wavelengths.

While attenuation is a function of the range (or path) of the signal, high

range resolution in the attenuation measurement is difficult to obtain. Hence

methods of attenuation correction are normally restricted to a path-integrated

attenuation (PIA) measurement. A current radar method that has been used

with aircraft-mounted radars, called the Surface Reference Technique (SRT),

estimates the PIA through rain from the decrease in the radar return from the

ocean surface, by comparing surface return powers measured in rain columns

to those measured in adjacent rain-free areas. Discussions of the SRT are

contained in Meneghini et al. (1983, 1987, 1989) and Fujita et al. (1985a, 1985b).

Several methods have been developed which use variations of the SRT to

estimate PIA, whereby this estimate is used to constrain the Hitschfeld and

Bordan (1954) solution for the rain profile. Examples of this approach are

presented by Meneghini and Nakamura (1990), Kozu and Nakamura (1991),

Marzoug and Amayenc (1991), Kozu et al. (1991), and Iguchi and Meneghini

(1994).
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While the SRT has been shown to perform well under certain

circumstances, its estimates of PIA are prone to noise, partly due to the

variable effects of wind and rain on the ocean surface. Another source of

error is due to the questionable underlying assumption that the roughness of

the ocean surface under the rain area is equivalent to that under the rain-free

area used for calibration of the SRT [see Meneghini et al. (1992)]. Hence other

independent methods for the estimation of PIA have been considered. One

such method, which uses the PMW brightness temperature at 10.7 GHz to

estimate PIA, has been chosen for use with the initial TRMM combined

algorithm, and is described by Smith et al. (1997a). As this method employs

both radar and radiometer data, it is considered a combined method, although

one which is designed around the modification of a radar method. More

detailed discussions on this subject are presented in the subsequent sub-

section introducing combined radar-radiometer retrieval.

1.2 Satellite Passive Radiometry

Satellite remote sensing of rainfall essentially began with the launch of

TIROS-1, the first meteorological satellite, in 1960. Even though this satellite

only viewed cloud tops with a VIS and IR sensor, one could make sensible

deductions about rainfall from a simple premise; rain falls from clouds, and

so where a satellite detects a cloud, there may be rain underneath. The basic

approach was to relate a single cloud-top parameter, derived from VIS and/or

IR values, to the rainfall rate at the surface, where this relationship was

determined via statistical regression analysis. Lethbridge (1967) and Barrett

(1970, 1973) were among the first to employ such techniques. Even after the

advent of passive microwave radiometry, which provided a more direct
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measurement of rainfall, research continued in rainfall estimation from

VIS/IR measurements. For example, Negri et al. (1984) and Arkin and

Meisner (1987) developed IR-based algorithms which are still used and

studied today.

Rainfall estimation from VIS and IR data has one fundamental flaw;

measurements at these wavelengths directly sense only cloud tops, not the

rain underneath, which leads to several problems. First it is not necessarily

raining underneath every point for which a satellite detects a cloud.

Secondly, a satellite may measure identical values of VIS/IR radiation at the

tops of clouds which have entirely different underlying rain structures.

The method chosen by many to alleviate these problems was to abandon

the VIS/IR approach which indirectly diagnoses precipitation by its

correlation with cloud tops, and instead use passive measurements in the

microwave regime, a part of the radiation spectrum that can effectively

penetrate the cloud tops and directly sense the raining hydrometeors

themselves. The first satellite-based PMW radiometer available for use in

rainfall retrievals was the Electrically Scanning Microwave Radiometer

(ESMR), a single-channel 19 GHz instrument launched aboard Nimbus 5 in

1972. Another version of the ESMR operating at 37 GHz was launched aboard

Nimbus 6 in 1975. Rainfall retrievals based on ESMR data were constructed

in about the same manner as the early VIS-IR retrievals, which was to relate a

single satellite-measured radiation value to a surface rainfall rate, either via a

statistical regression or theoretical techniques based on emission signatures

from hypothetical cloud structures. While the VIS-IR techniques did this

with VIS or IR cloud-top radiation values, the PMW techniques used the

microwave brightness temperatures (or TBs). Wilheit et al. (1977), Weinman

5



and Guetter (1977), Rodgers et al. (1979), and Jung (1980) were some of the first

to develop algorithms designed to transform ESMR TBs into surface rainfall

rate estimates. One drawback of the ESMR instruments was their limitation

to a single frequency. As a single brightness temperature is effectively a

weighted measurement of the entire hydrometeor column, it provides no

insight into the vertical structure of the clouds and precipitation. Also each

of the frequencies chosen has its own unique response to a column of liquid

and frozen hydrometeors (discussed in detail in Chapter 4), which limits the

utility of such a stand-alone single-frequency retrieval.

Hence the next logical step was a multi-frequency microwave sensor.

The first was the Scanning Multichannel Scanning Radiometer (SMMR),

launched aboard Nimbus 7 in 1978, and described in detail by Gloersen et al.

(1984). This multichannel sensor allowed for algorithms which could use the

different frequencies to explore the vertical structure of the precipitating

column. However past thinking, which attempted to estimate only a single

surface rainfall rate, was carried over in the use of this instrument. A

number of techniques developed for use with SMMR data used multiple

frequency brightness temperatures within a statistical regression to estimate a

single surface rainfall rate. Such work includes that of Alishouse (1983),

Prabhakara et al. (1986), and Hinton et al. (1992). The first attempt to exploit

the multifrequency information of the SMMR in a rainfall algorithm was

that of Olson (1989), which focused on rainfall within hurricanes. Another

multifrequency algorithm addressing a wider variety of rainfall was

developed by Kummerow et al. (1989), although it was designed for aircraft

measurements.
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The growth of multifrequency algorithms did not fully develop until the

launch of the next generation sensor, the Special Sensor Microwave Imager

(SSM/I) [described by Hollinger et al. (1990)]. The SSM/I is flown on the

Department of Defense (DoD) operational satellites under the Defense

Meteorological Satellite Program (DMSP); the first SSM/I was launched

aboard DMSP satellite F-8 in 1987. The first rainfall retrieval algorithms using

SSM/I data followed previous methods and produced a single rainfall rate at

the surface, hereafter referred to as rainmap algorithms. For example, the

original DoD operational algorithm, as described in CalVal (1989, 1991), is a

regression-based rainmap algorithm. A study of the effects of spatial

resolution effects on several of these algorithms is presented in Farrar et al.

(1994).

An examination of microwave measurements of precipitating clouds

reveals that radiation at the various PMW frequencies sample the depth of

the column with fundamentally different weighting functions, which

translates into effectively sampling different levels of the column. Figure 1.1

illustrates this for the four frequencies to be used by the TRMM PMW

radiometer, where height of the peak of the weighting function in the vertical

decreases with decreasing frequency. Hence measurements at these PMW

frequencies are not really measuring the rainrate at the surface, but are

actually sensing the vertical distribution of the hydrometeors. The reason the

aforementioned rainmap algorithms can often provide reasonable estimates

of surface rainrate is the inherent correlation between the broad vertical

distribution of hydrometeors and the amount reaching the surface as rain,

which is explored in detail in Chapter 4.
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In contrast to rainmap algorithms are vertical profile algorithms, which

take advantage of the vertical separation of the multiple TB weighting

functions to retrieve a vertical profile of the hydrometeor information

(instead of just a single surface rainrate value), as discussed in the studies of

Smith and Mugnai (1988, 1989) and Mugnai et al. (1990). While the weighting

function of each TB peaks at a different level, the broadness of the peaks and

the fact that only four frequencies are used ensure that the vertical resolution

of such profile algorithms will necessarily be coarse. Examples of such

comprehensive multifrequency techniques, which approached rainfall

retrieval from a profile approach, are given by Smith et al. (1992, 1994a-b),

Mugnai et al. (1993), Kummerow and Giglio (1994a-b), Marzano et al. (1994),

Evans et al. (1995), and Kummerow et al. (1996). A review of a number of

rainmap and profile algorithms, including a discussion and comparison of

their inherent differences and relative strengths and weaknesses, is given by

Wilheit et al. (1994).

1.3 Combined Radar-Radiometer Retrieval

While rainfall retrieval techniques using only a single data type (radar,

passive microwave, or VIS-IR) have been used for decades, combined

methods exploiting the complementary strengths of each are relatively new

[see Wilheit (1986)]. For example, Adler et al. (1991a, 1993, 1994) have

developed an algorithm that combines retrievals from geosynchronous IR

measurements with retrievals using SSM/I passive microwave

measurements, whereby the IR retrievals are scaled statistically by factors

derived from the microwave retrievals. One advantage of the

geosynchronous platform is that the period between successive
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measurements of the same location on the earth is typically no more than

one hour, as opposed to a sun-synchronous polar orbiting satellite which

views a point on the earth no more than twice a day. However as previously

mentioned, microwave measurements have the advantage over IR of directly

sensing the rain itself, and hence generally provide more accurate estimations

of instantaneous rainfall than IR techniques. Hence this method attempts to

improve upon the rainrates obtained from an IR retrieval by calibrating it

with results from a PMW retrieval. Further development of this method is

described by Kummerow and Giglio (1995).

Research in combined radar-radiometer retrievals has been quite limited

until recently. Lu and Hai (1980) experimented with a ground-based radar-

radiometer system (at 9.4 GHz) to measure rainfall, and showed that a

combination of a radar retrieval, with an independent radiometer-derived

estimate of path-integrated attenuation (PIA), provided improved results

over radar-only and radiometer-only methods. Hai et al. (1985) went on to

demonstrate further improvements by a dual-wavelength (9.4 and 35 GHz)

radar system.

The first combined scheme using down-looking radar and radiometer

measurements was performed by Weinman et al. (1990). The basic principle

is the same as that of the radar methods previously described, whereby the

standard radar technique of Hitschfeld and Bordan (1954) is constrained by an

independent PIA estimate. The difference is that the PIA is estimated from a

method using the passive microwave data, instead of a method such as the

Surface Reference Technique which uses radar data. Subsequent studies have

continued to explore this aircraft-borne combined retrieval approach, such as

Kumagai et al. (1993) and Schols and Weinman (1994).
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A different airborne radar-radiometer system was employed during the

Convection and Precipitation/Electrification project over Florida in 1991, as

described by Vivekanandan et al. (1993), Turk et al. (1994) and Marzano et al.

(1994). While coincident radar and radiometer measurements were taken,

these studies did not produce a true combined retrieval but instead compared

independent radar and radiometer retrievals.

Although the method of constraining a radar-derived solution with a

radiometer-derived PIA estimate employs both radar and radiometer data, it

still maintains separate theoretical frameworks for the passive and active

data. So in essence, these methods are actually the fusion of separate radar

and radiometer techniques. Moreover the radar is the dominant element in

the retrieval, with the radiometer providing only a supporting role with the

PIA correction.

Another class of algorithms are now under development, in which the

radar and radiometer measurements play an equivalent role in the inversion

process. Olson et al. (1995) and Haddad et al. (1996) are developing separate

profile retrieval schemes, whereby radar and radiometer measurements are

inverted by producing Bayesian coefficients which are applied to a pre-

existing profile database. An advantage of this approach is that since it does

not use any inversion scheme, it is computationally efficient which can be

important in an operational environment. However since this framework

generates solution profiles by a weighted average of the profiles in the pre-

existing database, it does not produce new independent profiles and hence is

limited to the structures inherent to the pre-existing database.

Another approach is the subject of this research, as introduced by Farrar

et al. (1996). This method allows the generation of independent profiles
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relative to those in a pre-existing database used for initial guess information.

The method represents hydrometeor profiles as structure functions, where

the coefficients of the functions are used as the optimization control

parameters in an optimization scheme. Hence new profiles are created as the

coefficients of the structure functions are adjusted during the optimization.

The other significant development in this algorithm is that it for the first

time uses both radar and radiometer data within a single, unified radiative

transfer framework, rather than in separate radiative frameworks.

Chapter 2 describes the retrieval algorithm methodology, followed by a

discussion of the sensors and the datasets in Chapter 3. Knowledge gained

through various tests using hydrometeor profiles from the high-resolution

hurricane simulation database in conjunction with the unified active-passive

RTE model are discussed in Chapter 4. The results of algorithm experiments

using aircraft data from TOGA-COARE are given in Chapter 5. Finally a

discussion and conclusions are given in Chapter 6.
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CHAPTER 2

METHODOLOGY

Until now, retrieval of rainfall in the tropics by satellite-borne

microwave sensors has been limited by several factors. The sun-synchronous

orbits of these satellites have limited the sampling frequency in the tropical

regions, while the satellites' altitude has limited the resolution of the data.

Also these sensors have consisted of passive radiometers of only a few

frequencies, strictly limiting the amount of independent information needed

to infer the vertical structure of the sampled precipitating regions. The

Tropical Rainfall Measuring Mission (TRMM), as described by Simpson et al.

(1988, 1996), is a joint American-Japanese satellite mission designed to directly

address these problems. It will fly in a low-inclination orbit, so that unlike

measurements from a satellite in a standard polar orbit which have data gaps

in equatorial regions, TRMM's measurements will blanket the tropics. Also

by including a down-looking radar, higher resolution information on the

vertical structure of observed precipitating rain columns will be available,

when compared to previous passive-only satellite sensor suites.

The TRMM satellite will deploy a wide array of instruments, including

the TRMM Microwave Imager (TMI), a five-frequency conically scanning

passive microwave radiometer, and the Precipitation Radar (PR), a single-

frequency (13.8 GHz) non-coherent cross-track scanning radar, the first of its

kind to be deployed on a satellite. The combination of measurements from

the TMI and PR will be the basis for the combined retrieval presented here.
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Further details about the TMI and PR, as well as for some of TRMM's other

instruments, are given in the Chapter 3.

As TRMM is not scheduled for launch until November 1997, rainfall

retrievals using real TMI and PR data cannot yet be conducted. Instead,

aircraft instruments designed to perform much like their future satellite-

borne counterparts are used in the development and testing of the combined

retrieval. TB measurements from the Advanced Microwave Precipitation

Radiometer (AMPR) are used in lieu of those from the TMI. The AMPR, a

cross-track scanning passive microwave radiometer which samples at four of

the five TMI frequencies, is flown aboard a NASA ER-2 aircraft. Reflectivities

from the Airborne Rain-Mapping Radar (ARMAR) are used in lieu of those

from the PR. The ARMAR, a coherent cross-track scanning radar which

operates at the TRMM PR frequency, is flown aboard a NASA DC-8 aircraft.

Note that unlike the TRMM PR, the ARMAR is coherent and hence can

produce Doppler vertical velocities in the presence of backscattering media

(i.e., hydrometeors). More details about these aircraft sensors, as well as

comparisons to their TRMM counterparts, are given in Chapter 3.

Combined precipitation retrievals using passive microwave (PMW)

radiometer and radar measurements, from either the TRMM sensors or their

aircraft-mounted predecessors, can be performed in several ways, as

previously discussed in the introduction. In anticipation of the launch of the

TRMM satellite, the TRMM project wished to have a workable combined

algorithm in place prior to launch so that retrieval products could begin from

the first day. The "Day-i" algorithm chosen was a Z-R radar method, similar

to that described by Weinman et al. (1990), in which the radar portion of the

algorithm is constrained by an estimate of path integrated attenuation (PIA)
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derived from 10.7 GHz TMI measurements. The estimation of PIA from the

10.7 GHz channel of the TMI, for use in the Day-1 algorithm, is described by

Smith et al. (1997); the Day-i algorithm itself is described in Haddad et al.

(1997).

While the Day-1 algorithm uses both radar and PMW radiometer data, it

is still essentially a radar technique and does not make full use of the

information provided by the PMW measurements. The combined technique

which is the subject of this research takes the next step, by fully incorporating

both radar and PMW radiometer measurements into a single data vector

within a combined inversion scheme, where both data types are given equal

weight. As the combined data vector includes the radar reflectivity

measurements from each radar range gate and the TB measurements from

each frequency of the PMW radiometer, it has been previously referred to as a

"tall vector" in similar studies.

This combined data vector is used in the retrieval method in the

following way. The process begins with the simulation of a precipitating

storm by a cloud model, which generates a series of hydrometeor profiles

present within the storm. Each of these hydrometeor profiles is input to a

radiative transfer equation (RTE) model, which produces PMW TBs and radar

Zs corresponding to each hydrometeor profile. The measured data vector is

then compared to each set of TBs and Zs within the simulation database,

where the set that matches the tall data vector most closely is selected as the

first guess. The initial guess hydrometeor profiles are then iteratively altered

within the context of an optimization scheme, producing a solution vector of

TBs and Zs which provide an improved match with the measured data

vector, when compared to the matchup using the unaltered initial guess
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values. The final state of the solution hydrometeor profiles is then used as

input to a rainfall submodel based on gravity fallout equations, which

produces a solution surface rainfall rate. A preliminary description of the

algorithm is presented by Farrar et al. (1996). A complete overview of the

methodology is given in the next section, with detailed descriptions of

important algorithm components given in the sections that follow.

2.1 Retrieval Overview

The combined retrieval scheme is presented in the form of a flowchart

in Figure 2.1 to aid in the discussion of the process. The first step is a database

of hydrometeor and vertical velocity profiles, produced from a high-

resolution hurricane simulation using a 3-D non-hydrostatic cloud model.

As the simulation produced cloud, hydrometeor, and vertical velocity

structures present in all stages of tropical disturbances, including cirrus

anvils, stratiform rain, and shallow and deep convection, the database serves

as a limited representation of all types of these structures found in the tropical

atmosphere. A complete description of the cloud model and the

hydrometeor database is presented in section 2.2.

The next step is to use the microphysical hydrometeor profiles as input

to a unified radar-radiometer Radiative Transfer Equation (RTE) model, in

order to link a set of reflectivity (Z) profiles and upwelling microwave

brightness temperatures (TB) with each set of corresponding hydrometeor

profiles in the database. The unified model is described in detail by Smith et

al. (1997b), with an overview presented in section 2.3.
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By inputting the hydrometeor profiles into the unified RTE model, a

reflectivity profile and set of PMW TBs are produced for each set of

hydrometeor profiles. These sets of corresponding brightness temperatures

(TB), reflectivities (Z), hydrometeor (Hyd) concentration profiles, and vertical

velocity (VV) profiles, form the initial guess database, indicated as the TB-Z-

Hyd-VV Database in Figure 2.1. The actual TB and Z measurements from the

AMPR and ARMAR, respectively, are then compared to all the matched sets

in the TB-Z-Hyd-VV database using an error function; the set of database TBs

and Zs which gives the minimum value of the error function is defined as

the best match, and hence the corresponding matched hydrometeor and

vertical velocity profiles are selected as the first guess profiles. The error

function calculates the RMS differences between measured and modeled TB

and Z data, and combines them by normalizing the RMS differences with the

expected noise of the instruments and the model. Note that all measured and

modeled Z values less than 0 dBZ are truncated to zero prior to calculation of

the error function. A more detailed discussion of the error function is

presented in section 2.4.

The first guess hydrometeor and cloud profiles are then fit to a series of

structure functions, such that the hydrometeor and cloud profiles are

expressed as a set of coefficients applied to a basis of structure functions. The

profiles are then perturbed by altering the coefficients. These new perturbed

profiles are then run through the unified RTE model, generating a new

working set of TBs and Zs. This procedure is repeated under the control of an

optimizer, using the structure function coefficients as the optimization

control parameters, until the working set of TBs and Zs match the

measurements within specified threshold limits as expressed by the
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previously discussed error function, or until the optimization steps fail to

provide a reduction of the error function. Section 2.5 provides a complete

description of the structure functions and optimization scheme.

The end product from the optimization is a solution set of profiles of

liquid and frozen hydrometeors, both suspended and precipitating. These

solution hydrometeor profiles are input into a rainfall submodel, which use

gravity fallout equations consistent with the cloud model to produce rainfall

rates at the surface, with a complete description provided in Section 2.6. Also

note that the solution hydrometeors can be used to obtain the latent heating

profiles by taking vertical derivatives of the mass fluxes of precipitating liquid

and ice, as described by Yang and Smith (1997).

As the hydrometeor profiles are altered during each step of the

optimization, the modified profiles are input to the forward RTE model

which produced a modified set of TBs and Zs. However as vertical velocity in

not an input parameter to the forward RTE calculations, the vertical velocity

profile from the initial guess database is not similarly modified. Hence as

new vertical velocity profiles are not generated during the optimization, the

first guess vertical velocity profile is retained for use in an experimental

technique to determine precipitation type (i.e., convective vs. stratiform).

The ARMAR Zs and AMPR TBs, along with the initial guess vertical velocity

profile, is used as input into the precipitation type technique, described in

detail in Section 2.7. An evaluation of the utility of the method based on

retrieval results from TOGA COARE is presented in chapter 5.
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2.2 Hydrometeor Database from Hurricane Simulation

The hydrometeor database was produced from a hurricane simulation

using the University of Wisconsin Non-hydrostatic Modeling System (UW-

NMS), a 3-D time-dependent cloud model described by Tripoli (1992a). The

UW-NMS model is a modification of the model originally developed by

Tripoli and Cotton (1982) and Cotton et al. (1982). The model employs a 2-way

multiple nested grid system, allowing the inner nest to move along with a

specified phenomena, such as the pressure minimum of an atmospheric

disturbance.

The microphysics module is a modification of the version used in the

Colorado State University-Regional Atmospheric Modeling System (CSU-

RAMS) model, which is described by Flatau et al. (1989). Modifications made

to the CSU-RAMS version include dividing the ice crystal category into

pristine ice crystals and snow, allowing the aggregates to be included in the

snow category, and representing the graupel with a constant-slope Marshall-

Palmer distribution. This results in five categories of microphysical

cloud/precipitation particles: (1) cloud drops, (2) rain drops, (3) graupel/hail,

(4) pristine ice crystals, and (5) snow, where the snow category includes both

ice crystal complexes (i.e., snow flakes) and aggregates of crystals and snow.

Each of these particle types can grow independently, or interactively by

coalescence (for liquid) or aggregation (for ice), as described by Tripoli (1992b).

The characteristic radius [as described by Flatau et al. (1989)], particle densities,

and size distribution functions for each microphysical category are given in

Table 2.1.
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Table 2.1: Hydrometeor Size Distribution Parameters and Particle Densities
[adapted from Panegrossi et al. (1997)]

Characteristic Size Distribution Particle density
Particle Type radius (m) Function (kg m -3)

cloud 1.0 x 10-5  mono-dispersed 1.0 x 10 3

rain 2.7 x 10-4  Marshall-Palmer 1.0 x 10 3

graupel 5.0 x 10-4  Marshall-Palmer 6.0 x 10 2

pristine ice 1.17 x 10 - 4  mono-dispersed 2.2 x 10 2

snow/aggregates 1.65 x 10-3  Marshall-Palmer 3.0 x 10 1

Table 2.2: Hurricane Simulation Nested Grid Setup Parameters
[adapted from Tripoli (1992b)]

Grid Number
Parameter #1 #2 #3 #4

Period of Activation 0-56 hrs 0-56 hrs 8-56 hrs 50-56 hrs
Central Latitude 17.50 N 16.50 N 16.50 N 18.50 N
Central Longitude 71.00 W 68.00 W 68.00 W 69.70 W
# of Horizontal Boxes * 64 60 64 60
Horizontal Spacing * 60 km 20 km 10 km 3.3km
Horizontal Domain Length 3840 km 1200 km 640 km 198km
# of Vertical Boxes 42 42 42 42
Vertical Spacing 400-800 m 400-800 m 400-800 m 400-800m
Vertical Domain Height 30.5 km 30.5 km 30.5 km 30.5 km
Large Timestep 120 s 40 s 20 s 6.33 s
Small Timestep 40 s 13.3 s 6.67 s 2.11 s

* Note: Inner grids also contain an outer row of boxes for transferring

boundary conditions with the outer grid. So for the high resolution grid #4
used in this research, the effective horizontal domain (including the
boundary boxes) is 205 x 205 km from 62 x 62 boxes.
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Table 2.3: Model Level Heights for High-Resolution Hurricane Simulation

Model Height Model Height
Level (km) Level (km)

1 30.574 22 13.774
2 29.774 23 12.974
3 28.974 24 12.174
4 28.174 25 11.374
5 27.374 26 10.574
6 26.574 27 9.774
7 25.774 28 8.974
8 24.974 29 8.174
9 24.174 30 7.374

10 23.374 31 6.574
11 22.574 32 5.774
12 21.774 33 4.973
13 20.974 34 4.179
14 20.174 35 3.432
15 19.374 36 2.756
16 18.574 37 2.142
17 17.774 38 1.584
18 16.974 39 1.076
19 16.174 40 0.615
20 15.374 41 0.195
21 14.574 42 0.000

The tropical cyclone simulation was carried out for approximately 56

hours of integration time. It began with an initial state where the wind

speeds were assumed to be zero. The basic thermodynamic structure, taken

from sounding profiles at Kingston, Jamaica, 36 hours prior to the passage of

Hurricane Gilbert in September, 1988, was assumed to be horizontally

homogeneous. The initial state was then perturbed by a modified Rankine

vortex [described in Tripoli (1992b)] and allowed to evolve. Four nested grids
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were used for the simulation. The outer grid (#1) was centered along the

expected storm track; the medium grid (#2) was centered over the location of

the initial perturbation; the next inner grid (#3) was implemented eight

hours into the simulation when the cyclone stage began; the high-resolution

grid (#4) was used in the last six hours of the simulation centered over the

mature cyclone. Specifics on grid locations, resolution, and spacing are given

in Table 2.2, while the vertical model level heights are given in Table 2.3.

Data from the high-resolution inner nest, with 3.3 km horizontal

resolution, was used in order to best match up with the resolution of the

ARMAR and AMPR data. A study using simulation data averaged to a lower

resolution, in conjunction with SSM/I (Special Sensor Microwave/ Imager)

measurements, is given by Panegrossi et al. (1997). While the profiles used

were extracted from the inner nest centered about the eye, they still contained

cloud and hydrometeor structures present in all stages of tropical

disturbances, from stratiform and shallow convection to the deep convection

of a fully formed eyewall.

From all the time steps in the high-resolution inner nest, six were

selected as containing a representative sample of all hydrometeor structures

found in the entire simulation. This subset, containing 20,081 matched sets of

hydrometeor and atmospheric profiles, was then used as the simulation

database for this study. The hydrometeor profiles are separated into the five

categories previously described, expressed in terms of equivalent liquid water

content. Figure 2.2(a) shows the average hydrometeor profile for each

hydrometeor category, and Figure 2.2(b) shows the "maximum profile"

defined as the maximum value of each hydrometeor category found at each

level in the database. The peak of each hydrometeor category falls in the
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expected relative location. The rain peak falls near the surface, with the cloud

above; the graupel and snow peaks above the freezing level, with the pristine

ice peaking above around the level of the cirrus anvil.

Another way of quantifying the hydrometeors is by their total Integrated

Water Path (IWP), which is the vertical integral of their equivalent water

content. A histogram of IWP of all database entries is given for each

hydrometeor category in parts (a)-(e), and for surface rainrate in part (f), of

Figure 2.3. As a significant portion of the profiles in the database are devoid

of at least one hydrometeor category, these zero cases are removed from the

histograms and their count is given in text in the upper portion of each panel.

The notable exception is pristine ice [part (d)], which is contained in every

profile in the database, due to the presence of a cirrus anvil in the entirety of

the inner nest of the hurricane simulation.

This presents a problem when attempting to retrieve rainfall over areas

without an overlying cirrus anvil, as there is no profile in the TB-Z-Hyd-VV

database without high clouds to match with the measured data. This was

resolved by duplicating the database with the upper levels of pristine ice and

snow removed, which allowed the lower phenomena (e.g., shallow

convection) to be represented both with and without an overlying layer of

high cloud. Since most of the high cloud in the simulation was dynamically

produced in the areas of deep convection and not by the same mechanisms

producing the underlying low-level hydrometeors, the removal of the upper

ice hydrometeors in a duplicate database does not destroy the dynamical

integrity of the low-level simulation [Tripoli (1997), personal

communication].
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(a) Average of each Hydrometeor category
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--. .-. Pristine Ice

15 -. Snow

10 -5"
0-

0 0.2 0.4 0.6 0.8 1
Average Water Content (g/mA3)

(b) Maximum of each Hydrometeor category
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Figure 2.2: Average (a) and maximum (b) values of equivalent water content
for each hydrometeor category in hurricane simulation database.
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Figure 2.3: Histogram of 20,081 database values of hydrometeor IWP (a)-(e)
and surface rainrate (f). Some low-value bins reported separately as their
large count overwhelmed the representation of the smaller count bins.
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As the simulations generated a complete dynamical structure of the

atmosphere, other atmospheric variables were available at each simulation

grid point. In addition to the previously discussed hydrometeor

concentrations, the simulation also produced a set of atmospheric profiles for

temperature, pressure, water vapor mixing ratio, and vertical velocity. The

average of each profile from the database, along with minimum and

maximum values detected at each level, are given in Figure 2.4. Features

illustrated are what one would expect from a tropical atmosphere, such as

heavy moisture in the lower atmosphere dropping off sharply with height, to

minute concentration at the tropopause. However the fact that this is a

hurricane"simulation does lead to warmer average temperatures in the

troposphere, as noted by an average freezing level height of near 6 km, when

compared to the freezing level height of 4.5 km normally found in the tropics

and typical of soundings taken during TOGA COARE. The average mixing

ratio in the troposphere is also more moist for the hurricane simulation than

that from typical soundings taken in TOGA COARE. There are also instances

of very large upward vertical velocities associated with the intense

convention around the hurricane eyewall, as exhibited by the maximum

vertical velocities detected in the database. Impacts of these atmospheric

properties on the retrieval process are discussed in Chapter 4.

2.3 Unified Radar-Radiometer RTE Model

A unified radar-radiometer Radiative Transfer Equation (RTE) model

has been developed to simulate both the passive microwave brightness

temperatures and the radar reflectivities at multiple range-gates for a

precipitating cloud. The unified model is a modification of a solar radiation
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model originally described by Xiang et al. (1994), and subsequently modified

for PMW rain profile retrieval as given by Smith et al. (1994a). In the new

model, the radar is treated as a radiation source, analogous to the sun as a

source for solar radiation. Hence radar reflectivities are generated by treating

the radar as a quasi-direct beam radiation source. By incorporating the

passive and active portions within a unified model framework, the unified

model allows absorption, scattering, and passive thermal sources to

contribute to both the passive and active radiative transfer processes. A

complete description of the unified model is given by Smith et al. (1997b).

The plane-parallel RTE for the combined radiometer-radar simulation is:
dTB (t , €' -- TdT (-TB (c g, ) + J (T, ) (3a)dl:

where the source function J is given by

j = 27  j P(g, 0; R', 0') TB (r, g', 0') dg' do'

+ (1-co)T(r) + -__ TB (RO) P (R, 0; 1o, 0) e-/g0 (3b)

47c

In the above equations, TB(tr,g,O) is the brightness temperature

representation of diffuse radiance, io the single-scattering albedo, P(g,O; g',')

the phase function, g the cosine of zenith angle, 0 the azimuth angle, tr the

optical depth, T(t) the environmental temperature at t, (go, 00) the direction

of radar beam, and RO the radar direct irradiance incident to the atmospheric

scattering volume. This latter term, as shown in Battan (1973), can be

expressed as
R0 = G Pt (4)

47c r2

where r is the distance between radar set and scattering volume, Pt the

transmitted radar power, and G the antenna gain. To convert R0 into TB(RO)

as required in Eq. (1b), the following relation is used:
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TB (RO) C24 0  (5)

C1 AX

where X is the radar wavelength, Ci and C2 the constants of the Planck

function, equaling 3.742 E-16 [Wom 2 ] and 1.438 E-2 [m-deg(K)], and AX the

effective radar bandwidth in terms of wavelength. All units used in

equations (2) and (3) are based on the SI convention.

The TB solved by the model is then transformed to radar reflectivity Z,

which is the counterpart to the measurement from the TRMM radar, by

z = o18 C1 A % TB At Ae (6)
n C2 X

4  C I q 2

where Ae is the effective collector area, At the target cross section, C the radar

constant [as defined by Battan (1973)], and k designates (m 2 - 1)/(m2 + 2),

where in is the complex index of refraction. The reflectivity Z is expressed in

units of [mm 6 m-3 ]; all other quantities are in SI units.

2.4 TB-Reflectivity Error Function

As described in section 2.1, the first guess set of profiles is selected as

those which produce the minimum value of an error function which

quantifies the agreement between the AMPR-measured TBs with the

simulation TBs, and between the ARMAR-measured Zs with the simulation

Zs. The quantity chosen as the matchup criteria is root mean square (RMS)

error. Calculating RMS error between the modeled and measured TBs is

straightforward, as is the calculation of RMS error between the modeled and

measured Zs. The problem lies in how to define a combined error function,

which expresses the simultaneous agreement of both TBs and Zs. If

combined in an ad hoc manner, the combined error function could be
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arbitrarily weighted disproportionally toward either the TBs or the Zs, giving

the other little weight in the combined error function.

To minimize this problem, each RMS difference is normalized by the

expected error inherent in both the RTE model and the associated measuring

instrument (i.e., AMPR or ARMAR). In this manner the calculated

differences between the measured and modeled quantities will be expressed

in terms of how much error would be expected due to random noise, so that

in effect the combined error characteristics of the instruments and model

select their relative weighting for themselves. Random error, or noise, is

normally reported as one standard deviation from the mean. The equation to

combine the unbiased noise effects of two independent quantities, such as the

instrument measurement and the model-produced value, may be expressed

as

Noise(combined) = \/Noise2(meas) + Noise2(model) (7)

Hence the error function for the brightness temperatures and reflectivities is

given by the following two equations, respectively:

4 _1 [AMPR TBi(K) - Model TBi(K)] 2
ERR (TB) - 4(8a)

E= VNoise 2(AMPR TBi(K)) + Noise2 (Model TBi(K))

itop 1 - [ARMAR Zi(dBZ) - Model Zi(dBZ)] 2

ERR (Z) Ib (ibot-itop+1) (8b)
= ibot /Noise2 (ARMAR Zi(dBZ)) + Noise 2 (Model Zi(dBZ))

where ibot and itop in equation (8b) refer to the bottom and top of the

reflectivity profile, excluding the uppermost model layers which are above

the height of any hydrometeors. The very large surface reflectivity signal in

the ARMAR measurements (typically -80 dBZ in clear conditions) leaks into
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the radar reflectivity measurements at radar range gates just above the

surface, dropping off to -55. dBZ of the surface value at a height of 500 m

[Durden et al. (1994)]. In order to prevent the algorithm from interpreting

low-level clear air returns due solely to surface contamination as real

hydrometeor returns, the reflectivity at a level above the range of the surface

contamination is assigned to all underlying levels down to the surface, prior

to the calculation of the error function. The combined error function is then

given by

ERR (Combined) = ERR (TB, Z) = 0.5 [ERR (TB) + ERR (Z)] (9)

The unbiased noise characteristics of the AMPR and ARMAR are given

by Spencer et al. (1994) and Durden et al. (1994), respectively. If there were no

biases between the model and the measurements all that would remain

would be to insert these unbiased noise characteristics into equations (8).

However there are biases, which is further complicated by the fact that their

exact values and the circumstances under which they exist are largely

unknown. Furthermore the calibration of the instruments tend to drift from

the values reported in initial calibration tests, creating another source of

added error. Hence instead of using the unbiased noise values reported

under known conditions, larger "effective" values were used in an attempt to

account for the effect of these biases and other calibration errors. The effective

errors were chosen as 1 K for the AMPR TBs [Spencer (1996), personal

communication], and 1.5 dBZ for the ARMAR reflectivities [Durden (1996),

personal communication], which were determined from analyses of data

from selected TOGA COARE cases and other field tests. These values were

also prescribed to account for effective noise inherent in the model TBs and

reflectivities.
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2.5 Structure Function Optimization Scheme

Once the algorithm has selected an initial guess set of hydrometeor

profiles from the TB-Z-Hyd-VV database using the method previously

described, the first guess profiles are provided as input to an optimization

scheme which seeks to iteratively alter their structure until the error function

is minimized. The most straightforward method of optimization would be to

alter each hydrometeor category at each level independently; with five

hydrometeor categories of 42 levels each, that would result in 210

optimization variables. In order to reduce this large number of independent

optimization variables, each hydrometeor profile (one for each hydrometeor

category) is fit to a function which reasonably matches the structure of the

hydrometeor profiles; hence their designation as "Structure Functions". The

coefficients of these structure functions which represent the hydrometeor

profiles are then used as the optimization control variables, rather than the

complete set of hydrometeor profiles themselves.

The selection of the precise form of the structure functions was driven by

three distinct criteria. First the functions should reasonably embody the

shape and structure of the hydrometeor profiles found in the initial guess

database. Secondly, since the hydrometeor column will have a distinct top

and bottom, the structure functions should be valid over a finite interval.

Thirdly, the series of functions should be mutually orthogonal, so that each

function will represent independent information, and not merely be a linear

combination of the others. For these reasons, Legendre Polynomials were

selected as the form of the structure functions.
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The generating function for the Legendre Polynomial of order (n), over

the interval -1 < x < 1, is given by1 dn (~~
Pn(x) 21 ndx ( X,2 - 1 ) n (10)

2' n! dxn(0

where x is the independent variable, and the function is valid over the

domain -1 < x < 1 [see Arfken(1970)]. As the hydrometeor concentrations are

given as a function of height, height is chosen as the independent variable,

where the heights of the top and bottom of each hydrometeor column have

been rescaled to -1 and 1, respectively. Then each first guess hydrometeor

profile is fit to a series of Legendre polynomials, starting with order n=0 up to

a finite upper limit. The specific form of the Legendre Polynomials calculated

from the generating function are given in Table 2.4; likewise the graphical

representation of Legendre Polynomials up to order 5 are presented in Figure

2.5.

Table 2.4: Legendre Polynomials up to 5th Order

Order Legendre Polynomial

0 PO (x)= 1

1 P1 (x)= x

2 P2 (x)= 1(3 X2 - 1)
2

3 P3 (x)= 1 (5 x3-3x)
2

4 P4 (x) = -(35 X4 - 30 X2 + 3)
8

5 P5 (x) = 1(63 x5- 70 x3 + 15x)
8
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As stated before, one of the reasons Legendre Polynomials were selected

as the form for the structure functions was their mutual orthogonality over

the domain interval, as expressed by

j Pm(x) Pn(x) dx = 0, m#n(1

Note that while orthogonality is exactly satisfied over an explicit integration

as given in the preceding equation, the Legendre Polynomial structure

functions are defined at discrete intervals only, as determined by the model

level heights. Hence the structure functions are more precisely described as

"nearly orthogonal", as explained by Strang (1988). As the intent of the

orthogonality was to maintain as much independence as possible between

successive orders of the structure functions, this slight departure from exact

orthogonality does not result in any detrimental effects to the optimization

process.

Once fit to the series of Legendre Polynomials, the hydrometeor

concentration, or equivalent Water Content (WC) as a function of height for

each hydrometeor category can be expressed as
5

WCi(x)= I CiPnWx,-:_<x! l (12)

n=O

where the hydrometeor category (i) has values 1-5, corresponding to the five

hydrometeor categories described in section 2.2. Note that values of

hydrometeor water content produced from the expansion equation (12) that

fall below zero are set equal to zero to avoid this pathological condition, and

the subsequent adverse computational effects that would result from using

negative hydrometeor contents as input to the unified RTE model. The

functional representation for a set of profiles taken from the TB-Z-Hyd-VV

database is given in Figure 2.6 as an example. Fitting tests from a random
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sample of the simulation database found that an upper limit of n=5 was

adequate to represent the hydrometeor structures. Also note that as nearly all

hydrometeor profiles from the database sample exhibited similarly simple

shapes, the agreement shown for the example in Figure 2.6 is typical for most

instances.

Once the first guess hydrometeor profiles have been fit to structure

functions, the retrieval algorithm proceeds to the optimization phase. The

error function previously defined in section 2.4 serves as the optimization

function, such that the optimization parameters (here the hydrometeor

profiles) are iteratively adjusted in order to minimize the error function.

Since the hydrometeor profiles have been fit with the Legendre Polynomial

structure functions, it is the coefficients C i defined in equation (12) that are

used as the optimization control parameters.

From among many types of optimization techniques designed to

minimize a function, the steepest descent method, as described by Gill et al.

(1981), was selected for use in the retrieval algorithm because of its simplicity.

The first step in the optimization is to determine the change in the error

function caused by small independent changes in the optimization control

parameters, which are the Legendre Polynomial coefficients. These changes

are expressed for each coefficient in the form of a derivative, namely

DERR - ERR(ci +ACi)- ERR(ci - Aci)
- A 1 n (13)Dc i 2 Ac i'

where Ac n represents a deviation from the original value of the coefficient.

If the coefficient is changed in the direction where the derivative in equation

(13) is negative, then the error function is decreased. These derivatives are

calculated for all optimization coefficients, and combined into an N-
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dimensional gradient (where N is the number of coefficients in the

optimization). The direction down this gradient is referred to as the direction

of steepest descent; hence "steepest descent" optimization. The incremental

change in the error function is then described as

ERR'= ERR,- k VN [ERR ) (14)

where ERR' is the new iterated value of the error function, ERRo is the

original value of the error function, k is the iteration step down the gradient,

and C I is the vector containing all the Structure Function coefficients. The

step size k is increased until a local minimum is reached, at which point the

gradient is re-calculated and the optimization proceeds in a different

"direction." This change of direction is illustrated for two dimensions in

Figure 2.7. The error function, which involves calculations of the combined

RTE model and the Mie coefficients therein, is highly non-linear with respect

to the hydrometeor concentrations, and hence may require many direction

changes during the optimization.

Finally, this process is repeated until one of the following conditions is

satisfied: (1) the error function is reduced below a prescribed minimum

threshold value; (2) the optimization exceeds a prescribed maximum number

of allowable iteration steps; or (3) the error function reaches a local minimum

where subsequent direction changes fail to further reduce its value. Figure 2.8

illustrates how the TBs, Zs, and surface rain rates change as the optimization

proceeds. Note that even though some individual quantities may oscillate,

the combined error function continues to decrease.
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Figure 2.7: Steepest-Descent optimization in 2-dimensions
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2.6 Rainfall Fallout Submodel

Once the retrieval algorithm has produced a solution set of hydrometeor

profiles, the rain hydrometeors are subjected to gravity fallout calculations

which a produce a profile of rain rate. The values of the rain rate profile near

the surface are then taken as the surface rainfall rate. The vertical rain rate

profile RR (z) is given by

RR(z) -Po(Z) [Wrd(Z) + W(z)] qrd/Pw (15)

where po is the basic state air density, pw the density of water (1000 kg m-3 ), qrd

the rain water mixing ratio, W(z) an externally specified cloud domain scale

vertical velocity, and Wrd the vertically dependent mean terminal velocity,

defined by

Wrd = -1. 9 4 4 pwD, 1 / (16)

where g is the gravitational acceleration, CD is the water drop drag coefficient

(0.588), and Dm is the characteristic drop diameter of the rain drops (540 mm).

In equation (15), the sign convention for the vertical velocity is taken as

positive upward/negative downward. Thus combining equations (15) and

(16),

RR(z) = 3.6x10 6 po(z) [6.72 po- 1/ 2 - Wz] qrd(Z) /Pw (17)

where the terms on the right hand side are given in SI units and RR is in mm

hr-1. Thus by evaluating equation (17) at the layer or layers near the surface

where W(sfc) = 0, the surface rain rate is obtained. This method is described

by Smith et al. (1994a), as well as similar expressions for precipitating ice.

2.7 Determination of precipitation type

One of the main objectives of TRMM is to explore the impact of tropical

precipitation on climate variability [Simpson et al. (1988, 1996)]. The primary
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feedback mechanism by which precipitation affects weather patterns in short

and long time scales is through diabatic heating. As described by Houze (1989,

1993) and Yang and Smith (1997), the heating characteristics of convective and

stratiform precipitation are distinctly different, as illustrated in Figure 2.9.

Hence the determination of precipitation type will be crucial if the goals of

TRMM are to be fulfilled.

In order to categorize precipitation, it is important to understand the

fundamental differences between categories and precisely what it is that

defines precipitation as either convective or stratiform. The fundamental

property that defines the type of precipitation is the mechanism by which the

precipitation particles, or hydrometeors, grow, as described by Houghton

(1968) and Houze (1993). Yuter and Houze (1995a) explain that stratiform

precipitation grows primarily by aggregation and riming just above the

melting layer, and by vapor deposition at higher levels, whereas convective

precipitation grows primarily by accretion of water.

The underlying physical property that controls these growth

mechanisms is the vertical motion within the precipitating column. As such,

Yuter and Houze (1995a) give a definition of convective and stratiform using

vertical velocity with respect to terminal fall speed of ice:

stratiform: I << Ivic (18a)

convective: IN >> Ivic (18b)

where typically vice - 1-3 m s-1 . For stratiform situations, the vertical

velocity is weakly upward, while for convection, updraft speeds are of a

greater magnitude, where typically w - 1-10 m s-1 . These vertical velocity

characteristics imply an associated reflectivity structure.
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Figure 2.9: Characteristic shapes of heating profiles in (a) convective and (b)
stratiform regions. Based on Houze (1989).
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Figure 2.10: Vertical structure of hydrometeors and their growth mechanisms
and the resulting "Bright Band" in a stratiform rain region. From Houze
(1993).
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The radar reflectivity from an ice particle is less than that of a water

particle of the same effective size or mass, due to the fact that the dielectric

constant for ice is less than that for liquid water. However when snow and

ice aggregates approach the melting layer, a thin film of liquid water forms on

the outside of the particles, which results in a radar reflectivity signature

nearly equivalent to that of a pure liquid drop of the same effective size.

Since pure liquid drops are not present at the sizes of the liquid-covered ice

particles, returns from these particles are more intense than that of the liquid

rain drops present in the same vicinity. As the terminal fall velocities of

aggregates and snow flakes are roughly the same order as the upward motion

in a stratiform system, a significant portion of these liquid-coated ice particles

can remain near the melting layer. Hence the concentration of these particles

in a narrow region near the melting layer, coupled with their higher

reflectivities with respect to pure ice and liquid water drops, give rise to a

well-defined peak in reflectivity known as the "bright band", as described by

Battan (1973) and Houze (1993), and as depicted in Figure 2.10.

For convective precipitation, larger updrafts and downdrafts spread these

particles in the vertical, suppressing their concentration in any narrow

region. Also these updrafts support growth of the ice particles by riming,

which leads to a peak in reflectivity with respect to the non-updraft

background, as described by Churchill and Houze (1984). Typical profiles of

reflectivity and vertical velocity for convective and stratiform rain are given

in Figure 2.11.

The differences in the typical hydrometeor structures between

convective and stratiform rain also result in distinctive signatures in

upwelling PMW TBs. The TB signature is directly related to the type,
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concentration, and size distribution of the hydrometeors, as described by

Wilheit et al. (1977) and Wu and Weinman (1984). Emission signatures at

lower microwave frequencies (freq. < 30 GHz) are directly related to the total

amount of liquid water in the column, whereas for higher frequencies the TB

values are depressed due to scattering by large ice particles [Spencer et al.

(1989), Adler et al. (1991), Smith et al. (1992), and Mugnai et al. (1993)]. Note

that over land, maximum updraft speeds are stronger than those present over

ocean, such that ice particles can grow larger and hence the ice scattering

signature can be more intense, as shown by Lemone and Zipser (1980), Zipser

and Lemone (1980), and Lucas et al. (1994).
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Figure 2.11: Characteristic mean profiles of (a) vertical velocity and (b) radar
reflectivity for convective (solid lines) and stratiform (dotted lines) rain
regions. From Yuter and Houze (1995b).
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These differences in heating profiles, reflectivity, and brightness

temperature signatures have led to a host of different methods to classify

precipitation as either convective or stratiform. Tao et al. (1993) present a

heating profile method based on region-specific heating climatologies. Other

methods take advantage of the fact that for both the reflectivity and brightness

temperature fields, convective regions tend to stand out from the background

while stratiform regions tend to appear homogeneous. Hence such

techniques are sometimes referred to as "texture" methods. Churchill and

Houze (1984) and Steiner et al. (1995) separate convective from stratiform

precipitation based on the intensity and sharpness in the peaks of reflectivity,

while Hong et al. (1997) present a convective-stratiform index based on the

variability and intensity of TB differences at multiple frequencies.

The approach chosen for the precipitation classification scheme within

the combined retrieval algorithm was to diagnose only well-defined

convective and stratiform regions, leaving all other candidates in an

undefined "unknown" category. This is accomplished in a two-step

procedure: first deep convection is separated using TB thresholds, and then

stratiform rain is diagnosed with the existence of the bright band.

The first step is to identify well-defined deep convection by its brightness

temperature signature. Several studies have found that TBs at 85 GHz less

than 210 K are only found in convective cases [Spencer et al. (1989), Adler et

al. (1991), Liu and Curry (1992)], as stratiform conditions are not capable of

producing ice particles large enough to create that much of a scattering

depression. This minimum threshold was confirmed by McGaughey et al.

(1996) and McGaughey and Zipser (1996) for the AMPR instrument during

TOGA COARE, where 220 K was the minimum AMPR 85.5 GHz TB found to

47



be associated with stratiform conditions. These authors also indicate a

maximum emission peak for the AMPR 10.7 GHz TB associated with

stratiform conditions to be - 210 K. While cases where 10.7 GHz TB < 210 K

involved both stratiform rain and convection, cases with 10.7 GHz TB > 210 K

were only associated with convection. In order to avoid false identification,

the method requires the published threshold values not only be met but

exceeded by 10 K. Hence deep convective cases are separated using the

following TB threshold values:

convective: 10.7 GHz TB > 220 K -OR- 85.5 GHz TB < 210 K (19)

Equation (19) contains the logical "OR" notation, as only one condition is

necessary to trigger the convective classification. McGaughey et al. (1996) note

that the vertical tilt of precipitation sometimes causes the maximum in 10.7

GHz TB and the minimum in 85.5 GHz TB of a convective cell to not lie in

the same vertical column.

The second part of the technique uses the existence of a bright band to

diagnose stratiform rain. While this is reasonable for well-defined stratiform

conditions, it is noted that stratiform conditions in the development and

dissipation stages often do not exhibit a bright band, as described by Yuter and

Houze (1995a,b,c). Hence some stratiform precipitation will not produce a

bright band, and consequently not be diagnosed as stratiform by the method.

In automating the determination of the existence of a bright band, the peak

reflectivity in a 3 km layer centered about the freezing level (-4.5 km altitude

for the TOGA COARE data) was located, and only values of 25 dBZ or greater

were considered as candidates. The value of the reflectivity was then required

to drop by at least 5 dBZ within 1 km above and below the peak. [All

threshold values obtained from Durden (1997), personal communication].
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Reflectivity profiles that met all these conditions were diagnosed as having a

bright band, and consequently classified as stratiform.

Note that as decaying convection can exhibit a bright band, as described

by Rinehart (1991), it is possible for a set of TBs and Zs to satisfy both the TB

threshold test for convection and the bright band test for stratiform rain.

Hence in those cases, the TB threshold test takes precedence and the case is

classified as convective. Finally, all retrievals that fail both the TB threshold

test for deep convection, and the brightband test for well-developed

stratiform, are tagged as unknown.

While this method exploits differences between typical TB and Z

signatures from convective and stratiform rain, these quantities are only

indirect measures of the underlying dynamical and microphysical properties

that distinguish these two distinctly different types of precipitation. As

previously described, the fundamental property that governs precipitation

growth, and therefore its type, is vertical velocity. Hence if an algorithm

could correctly diagnose the vertical velocity structure of a precipitating

column, the precipitation classification might proceed on a more basic level.

Previously it was explained that since no new vertical velocities were

generated during the optimization, the vertical velocity profile from the

database corresponding to the first guess was retained as the "solution"

vertical velocity profile. In order to determine whether the initial guess

vertical velocity profile would provide any value in the determination of

precipitation type, it was analyzed within the retrieval in two ways. First it

was compared to the ARMAR Doppler vertical velocities, which indicate the

vertical motion of the hydrometeors. By subtracting a value of hydrometeor

terminal fall speed in the layer consistent with the previously defined typical
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values given by Yuter and Houze (1995a), the Doppler velocities of the

hydrormeteors were transformed to generate an estimate of the average

atmospheric vertical velocity in the layer, which was then compared to the

average atmospheric vertical velocity of the layer from the initial guess.

Secondly the distribution of first guess vertical velocities was analyzed

separately for profiles diagnosed as convective, stratiform, and unknown, as

defined by the precipitation classification scheme presented above. These

distributions were also compared to those generated using the corresponding

ARMAR Doppler velocities. These analyses are presented, along with the

other retrieval results, in Chapter 5.
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CHAPTER 3

INSTRUMENTS AND DATA

3.1 Instruments

As previously discussed, the combined algorithm is being developed for

use with PMW radiometer and radar measurements from the Tropical

Rainfall Measuring Mission (TRMM) satellite. The PMW radiometer is the

TRMM Microwave Imager (TMI), a five-frequency (10.7, 19.35, 22.2, 37.0 and

85.5 GHz) conically scanning passive microwave radiometer, and is a

modification of a the Special Sensor Microwave/Imager (SSM/I) sensor now

flown on the Defense Meteorological Satellite Program (DMSP) satellites. The

TMI is supplemented by a first-of-its-kind satellite-borne Precipitation Radar

(PR), a single-frequency (13.8 GHz) incoherent cross-track scanning radar, as

described by Okamoto et al. (1991). These two instruments will provide the

input for the combined retrieval. In addition to the TMI and PR, TRMM will

also deploy the Visible-Infrared Scanner (VIRS), a VIS-IR radiometer similar

to the AVHRR (Advanced Very High Resolution Radiometer) flown on

today's NOAA operational satellites. TRMM will also deploy a Lightning

Imaging Sensor (LIS), a single frequency scanning lightning detector. More

details about these sensors are given by Simpson et al. (1997). Some

instrument specifications for the TRMM instruments are summarized in

Table 3.1.
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Table 3.1: TRMM Sensor Information

(a) Basic Sensor Information:

Sensor Swath (km) Scan angle Scan type

PR (Precipitation Radar) 215 ±170 cross-track
TMI (TRMM Microwave Imager) 760 ±650 conical (490)
VIRS (Visible-Infrared Scanner) 720 ±460 cross-track
LIS (Lightning Imaging Sensor) 600 ±410 cross-track

(b) Channel Information:

Channel freq. Horizontal ground
Sensor or wavelength resolution at nadir (km)

PR 13.8 GHz 4.3

TMI 10.65 GHz 38.3 x 63.2 (cross track x
19.35 18.4 x 30.4 down-track)
21.3 16.5 x 27.2
37.0 9.7 x 16.0
85.5 4.4 x 7.2

VIRS 0.63 tin 2.0
1.6 2.0
3.75 2.0
10.8 2.0
12.0 2.0

LIS 0.77765 gim 10.0

(c) Satellite Platform Information:

Altitude: -350 km
Inclination : ~350
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Table 3.2: Aircraft Sensor Information

(a) Basic Sensor Information:

Aircraft Altitude Swath Scan
Sensor platform (km) (km) angle

ARMAR (Airborne Rain- DC-8 12 9 ±200
Mapping Radar)

AMPR (Advanced Microwave ER-2 20 40 ±450

Precipitation Radiometer)
MAS (MODIS Airborne ER-2 20 37 ±430

Simulator)

(b) Channel Information:

Channel freq. Horizontal ground

Sensor or wavelength resolution at nadir

ARMAR 13.8 GHz 0.8 km

AMPR 10.7 GHz 2.8 km
19.35 2.8
37.1 1.5
85.5 0.6

MAS 0.664 gm 50 m
0.875 50
1.621 50
1.830 50
2.142 50
3.725 50
8.563 50
11.002 50
12.032 50
13.186 50
13.952 50
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As TRMM is not scheduled for launch until November 1997,

measurements from the TMI, PR, VIRS, and LIS instruments are not yet

available. To test and evaluate the combined algorithm prior to TRMM's

launch, measurements from aircraft instruments designed mimic the

performance of their TRMM counterparts are used. PMW measurements

from the Advanced Microwave Precipitation Radiometer (AMPR) are used in

place of data from the TMI. The AMPR is a cross-track scanning passive

microwave radiometer designed primarily at NASA Marshall Space Flight

Center, and is flown aboard a NASA ER-2 aircraft. The AMPR passively

samples at four frequencies (10.7, 19.35, 37.1, and 85.5 GHz), and is described at

length by Spencer et al. (1994). Measurements from the Airborne Rain-

Mapping Radar (ARMAR ) are used in place of data from the PR. The

ARMAR is a coherent radar designed primarily at the NASA Jet Propulsion

Laboratory (JPL), and is flown aboard a NASA DC-8 aircraft. The ARMAR

actively samples at a single frequency of 13.8 GHz, and unlike the PR has a

PMW radiometer at the radar frequency. The ARMAR is described in detail

by Durden et al. (1994).

While VIS/IR data are not used in the rainfall retrieval algorithm, data

from the MODIS Airborne Simulator (MAS) were available to be used in

place of the VIRS. The MAS is an eleven channel VIS/IR sensor (1-VIS, 10-IR

channels) flown on a NASA ER-2, and is described by Gumley (1993).

Instrument specifications for the aircraft sensors are given in Table 3.2. (Note:

no data from an instrument comparable to the LIS was available which was

coincident to the AMPR, ARMAR, and MAS datasets.)
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3.2 TOGA COARE Data Set

To test and evaluate the combined retrieval method, test cases were

selected from aircraft radar and radiometer data taken during the Tropical

Ocean Global Atmosphere - Coupled Ocean Atmosphere Response

Experiment (TOGA-COARE). This experiment was designed to study the

western Pacific warm pool region, in an attempt to better understand the

coupling between atmosphere and ocean processes, as well as the atmospheric

processes that organize convection in the region. A thorough description of

the experiment and its scientific objectives is given by Webster and Lukas

(1992). Of particular interest to this research is that among the many

accomplishments of TOGA-COARE, it produced some of the most

comprehensive observations of convection over the tropical oceans to date.

The test cases used in this research consist of four coordinated flights of

the NASA ER-2 (AMPR) and DC-8 (ARMAR) aircraft, flown on 4, 8, 20, and 22

February 1993. Since the aircraft fly at different altitudes, off-nadir views from

each of the instruments sample different slant paths through the atmosphere

below. Hence for purposes of algorithm testing, only the nadir

measurements directly below the aircraft were used. Even though nadir data

was used in this study, collocation of the AMPR TBs and ARMAR Zs at nadir

was not trivial, since neither the instrument clocks nor the aircraft locations

were perfectly synchronized. This was overcome by overlaying plots of the

AMPR TBs and the ARMAR 13.8 GHz TB, and manually aligning the data by

matching the peaks and valleys found in the PMW TB signal. Further details

about the TOGA COARE test cases and the how they were used in algorithm

testing is given in Chapter 5.
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CHAPTER 4

FORWARD RTE MODELING ANALYSES

4.1 Database distributions of TBs and Reflectivities

In creating the TB-Z-Hyd-VV database, the hydrometeor profiles from

the high-resolution hurricane simulation are input to the unified RTE model

to produce a set of corresponding brightness temperatures (TBs) and

reflectivities (Zs), as illustrated in Figure 2.1. As retrieval tests are to be

conducted using TOGA-COARE data from February 1993, average values of

sea surface temperature and atmospheric profile information (i.e.,

temperature, pressure, and mixing ratio) from this month and region are

used as input to the RTE model. In order to determine whether the

simulation database will provide an adequate basis of initial guesses for the

combined retrieval, a logical first step is to determine whether the range of

TBs and Zs in the database generated as described above adequately represent

the range of the actual instrument measurements. Hence a statistical

distribution of the TBs and Zs was produced, in a similar manner to that

shown in section 2.2 for the simulation hydrometeors and atmospheric

parameters.

The first is the distribution of TBs, presented in Figure 4.1 in the

histogram form. The most noticeable feature from these histograms are the

large number of profiles having TBs concentrated at high values for 85.5 GHz,

and at low TB values for the other frequencies: (a) near 125 K for 10.65 GHz,

(b) near 160 K for 19.35 GHz, (c) near 170 K for 37.0 GHz, and (d) from 240-280
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K for 85.5 GHz. These values correspond to the large number of profiles in

the database with a cirrus anvil (represented with the pristine ice category),

but with little or no other underlying hydrometeors. For all frequencies but

85.5 GHz, the resultant TBs are near the clear-sky values, while at 85.5 GHz

the pristine ice does have a noticeable scattering effect, decreasing the TBs

from the clear sky value over a range of several Kelvins. The distribution of

the remainder of the TBs outside these ranges are a function of emission and

scattering by hydrometeors. The broad distributions over the entire TB range

indicates a well distributed sample of differing vertical distributions and

hydrometeor amounts for the combined retrieval to choose from during the

initial guess procedure. Further details are given in the next section.

The effect of the significant amount of cirrus-only cases is also prominent in

the reflectivity distribution, given in Figure 4.2. Typically the range in

reflectivities produced by the RTE model for the cirrus deck is -15-25 dBZ,

corresponding to the peaks in the distributions shown in Figure 4.2. The

lowest Z values in parts (a) and (b) of Figure 4.2 are not due to minimal back-

scattering from small hydrometeor amounts high in the column, but to

regions near the surface which are heavily attenuated by large amounts of

rain above. Finally the maximum reflectivities, near 55 dBZ as shown in

Figure 4.2(c), are due solely to hydrometeor back-scattering. This is notable as

the model does not produce reflectivities due to back-scattering from the

surface itself, which regularly exceed 80 dBZ as measured by the ARMAR.

Hence the error function (see section 2.4) does not include the surface layer in

calculating the difference in reflectivity between the measured data and the

model.
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Figure 4.2: Histogram of Zs from the simulation database, including (a) all
values contained in 20,081 total profiles, (b) minimum non-zero value of
each profile, and (c) maximum value of each profile.
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Figure 4.3: Histogram of reflectivity differences between RTE calculations
using different values of (a) atmospheric profiles (TOGA-COARE vs.
simulation soundings) and (b) hydrometeor profiles (original vs. Legendre
polynomial-fitted profiles).
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As discussed in section 2.2, the high-resolution hurricane simulation

produced an atmosphere more warm and moist than is normal for a standard

tropical atmosphere. Since the retrieval tests in this research are from TOGA

COARE, where temperature and moisture were much closer to the

climatological norm [as reported in TCIPO (1993)] than were those from the

hurricane simulation database, the forward RTE calculations for producing

the database TBs and Zs used average atmospheric conditions from TOGA

COARE instead of those provided by the hurricane simulation. For purposes

of comparison, the database was also generated using the atmospheric profiles

provided by the simulation as input to the unified RTE model.

The differences between the Zs and TBs calculated using the different

atmospheric conditions are given in Figures 4.3(a) and 4.4, respectively.

While Figure 4.3(a) shows that most reflectivities from the database are

changed no more than a few dBZ, some cases did produce larger changes.

Figure 4.4 shows that the effect on the TBs is spread over a larger percentage

of the cases within the database than in the case for the Zs. The effect on the

TBs is due to the dependence of emission at microwave frequencies on both

temperature and humidity. This effect is seen less for 85.5 GHz [Figure 4.4(d)],

as emission plays less of a role on the total TB signature than at the lower

frequencies, which will be discussed in further detail later in the Chapter.

Given these effects, the TBs and Zs of all database profiles should be generated

under atmospheric conditions similar to those where the retrieval is being

conducted. Also each database entry should be calculated under the same

atmospheric conditions as all the rest, lest the selection of the first guess using

the error function confuse TB and Z differences due to temperature and

62



moisture effects with those from purely hydrometeor effects, which are the

focus of the retrieval process.

Another part of the algorithm that affects the TBs and Zs is the use of

structure functions to represent the hydrometeor profiles, as described in

section 2.5. As these fits are not exact, the hydrometeor concentration at any

given level can change as a result of the structure function fit, which in turn

leads to changes in the TBs and Zs. Changes to reflectivities due to this effect

are illustrated in Figure 4.3(b). While this figure only displays changes up to

10 dBZ, there are individual cases where the changes are larger. For example,

in cases where small hydrometeor amounts are present at a given level

(generating a reflectivity - 20 dBZ at that level), the structure function fitting

can replace the small hydrometeor value with 0 dBZ, which drops the

reflectivity generated by the RTE model from -20 dBZ to 0 dBZ. The effect on

the TBs, as shown in Figure 4.5, is less pronounced, as the TBs respond more

to the total integrated amount of hydrometeors in the column than to their

vertical distribution; further discussion on this point is given in the next

section. Due to the TB and Z changes arising from structure function

representation, the fitting is accomplished during the original creation of the

TB-Z-Hyd-VV database as shown in Figure 2.1. If the database had been

created using the original non-transformed hydrometeor profiles, the first

step in the optimization process (as described in section 2.5), which would be

to perform the structure function transformation, could produce significantly

different TBs and Zs than the first guess. When the transformed profiles

were then input into the error function, it could then result in a worse match

with the measurements, which would immediately end the optimization as

the first guess was degraded instead of improved.
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One final factor contributing to TB and Z differences are the multiple

versions of the database, as described in section 2.2. Due to the fact that all

profiles in the database contained high level ice as a result of the cirrus anvil

present throughout the simulation, pristine ice and then both pristine ice and

snow were removed from the original simulation profiles in order to

produce new profiles without overlying high cloud. This is primarily done to

allow for better reflectivity matches at higher levels. For example, for a case

of shallow precipitation with no upper level hydrometeors, the ARMAR

measures zero reflectivity at levels above the shallow precipitating column,

while all the original simulation profiles would have non-zero reflectivities

aloft due to the cirrus anvil. Figures 4.6 and 4.7 illustrate the resultant effect

on removing pristine ice, and then removing both pristine ice and snow,

respectively. It is shown in Figure 4.6 that while the removal of pristine ice

does have some effect at 85.5 GHz, where ice scattering is reduced somewhat,

the effects at the lower frequencies is minimal. The effects of removing snow

as seen in Figure 4.7 are more pronounced, due to the greater scattering cross-

section of snow when compared to pristine ice. Nevertheless the effects at

10.65 and 19.35 GHz are relatively small.

Hence the three versions (#1 with all hydrometeors present, #2 without

pristine ice, and #3 without pristine ice and snow) of the database, all of

which are searched during the initial guess portion of the retrieval, allow a

greater variety of reflectivity profiles for roughly equivalent TB values. This

also aptly illustrates one of the weaknesses of passive-only retrieval, namely

the non-uniqueness problem in which hydrometeor structures with different

vertical distributions can produce nearly identical brightness temperatures.

One of the foremost improvements of combined retrieval is that by including
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the reflectivities as additional constraints on the retrieval, the non-

uniqueness problems can be reduced, which will be illustrated in the next

chapter.

4.2 Relationship of TBs and Reflectivities to Hydrometeor Structures

Previous modeling studies by Mugnai et al. (1988), Smith and Mugnai

(1988, 1989), Adler et al. (1991b), and others have demonstrated that upwelling

microwave brightness temperatures at the top of a precipitating column

respond to both emission and reflection from the surface and emission and

scattering by hydrometeors. For low frequencies such as 10.65 GHz, the signal

is primarily driven by emission from the surface and liquid hydrometeors,

while for high frequencies such as 85.5 GHz, the emission signal is obscured

by the scattering by frozen hydrometeors when present in sufficient amounts.

As the surface emission characteristics and atmospheric conditions were the

same for all cases in the TB-Z-Hyd-VV simulation database, differences in the

TBs and Zs are due solely to differences in hydrometeor structure.

In an attempt to understand the impacts of hydrometeor structure on the

PMW and radar signals, analyses of the matched TB-Z-Hyd-VV simulation

database were performed by comparing the hydrometeor profiles with their

resultant radiative values, beginning with the TBs. The surface rain rate and

total integrated water path (IWP) of each hydrometeor category is plotted

against the corresponding 10.65 GHz TB in Figure 4.8; the same is done for

19.35 GHz TB, 37.0 GHz TB, and 85.5 GHz TB, in Figures 4.9, 4.10, and 4.11,

respectively.
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Figure 4.8: Scatterplot of simulation database values of 10.65 GHz TB vs.
hydrometeor TWP (a)-(e) and surface rainrate (f).
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Figure 4.9: Scatterplot of simulation database values of 19.35 GHz TB vs.

hydrometeor IWP (a)-(e) and surface rainrate (f).
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Figure 4.10: Scatterplot of simulation database values of 37.0 GHz TB vs.
hydrometeor IWP (a)-(e) and surface rainrate (f).
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The dependence of the 10.65 GHz TB on emission is clearly seen in

Figure 4.8(b). As the amount of rain in the column increases, the brightness

temperature increases due to emission until the signal saturates near 290 K,

where rain IWP approaches 20 kg m - 2 . As more rain is added the TB signal

begins to decrease slightly due to the following effect. As rain is added past

the point of signal saturation, the weighting function begins to move upward

from its peak at the surface (as shown in Figure 1.1) to higher in the column.

As atmospheric temperature decreases with increasing height above the

surface, the peak of the weighting function is pushed to a level of colder

temperature, which decreases the emission.

This follows closely with the relationship of 10.65 GHz TB with surface

rain rate, shown in Figure 4.8(f), due to the high degree correlation with the

total amount of rain in the column and the amount which reaches the

surface. Also of note is the poor apparent correlation of cloud IWP with 10.65

GHz TB. While the TB is a function of emission from all suspended liquid,

including cloud, the signal is dominated by the relatively larger rain drops. In

addition to their larger size, the rain is also present in greater amounts, as

seen in Figure 2.2(a), where the average water content in the simulation

database for rain peaks at ~0.7 g.m -3, while the cloud peaks at a value of -0.15

g.m - 3 . Their cumulative emission effects are handled by the forward RTE

model, which provides a way to objectively account for their microphysical

differences.

The situation for 19.35 GHz, shown in Figure 4.9, is much the same as for

10.65 GHz. However as seen in Figure 4.9(b), the TB signature saturates at a

rain IWP value near 5 kg m - 2, a much lower value than for 10.65 GHz. The

same is true for the surface rain rate in part (f) of the figure, where the TB

73



plateaus within a much shorter range of TBs and rain rates. Also the

scattering due to graupel is much more defined than for 10.65 GHz TB, as seen

in part (c), although for smaller graupel IWP values the signature is still

dominated by emission effects. This transition in the TB signature from

dominance by emission to scattering is more pronounced when the frequency

is increased to 37.0 GHz, as illustrated by Figure 4.10. The graupel IWP

signature in part (c) of the figure demonstrates a well-defined depression due

to scattering, with the exception of values less than 5 kg m -2 where emission

still makes a substantial contribution to the overall signal. Like the previous

discussion of total emission as a function of all liquid, total ice scattering is

affected by all frozen hydrometeors. However with the apparently poor

correlation of scattering by pristine ice and snow, as seen in parts (d) and (e) of

the figure, the scattering signal is clearly driven by the graupel, much like the

emission which is dominated by the rain. The dominance of ice scattering

over liquid emission is nearly complete for the 85.5 GHz TB, as seen in Figure

4.11. The emission signature in the rain IWP and surface rain rate, panels (a)

and (f), is almost completely gone. Also the emission contribution from

liquid for cases of low graupel content, seen for 37.0 GHz in Figure 4.10 (c), has

vanished for 85.5 GHz, as seen in Figure 4.11(c).

The preceding figures demonstrated that the emission effects of liquid

and the scattering effects of ice sometimes obscure each other. In order to sort

out their independent properties, all TBs in the database were recalculated

using only the liquid hydrometeors (no ice), and then again with only the

frozen hydrometeors (no liquid). The results for 10.65 GHz are shown in

Figure 4.12. The TBs produced using all hydrometeors as input to the RTE

model are plotted versus rain IWP in panel (a); this is contrasted with a plot
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of TBs produced omitting all ice hydrometeors versus rain IWP, plotted in

panel (b). The primary difference occurs at large values of rain IWP produced

by deep convection, where large amounts of ice also tend to be present. The

TB signature, already saturated with respect to emission, can be reduced a

little further by scattering when large amounts of ice are added. Note that this

effect is small at 10.65 GHz, and is rarely seen in real measurements.

Similarly the 10.65 GHz TBs produced using all hydrometeors as input to the

RTE model are plotted versus graupel IWP in panel (c) of Figure 4.12, which

is contrasted with the plot off TBs generated omitting all liquid hydrometeors

versus graupel IWP, shown in panel (d). Considering the small scattering

effects of ice at 10.65 GHz, the relatively small change in TB exhibited in

Figure 4.12(d) should be expected. However the fact that TBs increase slightly

as graupel IWP is increased demonstrates emission by the ice itself can be

relevant in the absence of liquid hydrometeors.

Just as in the preceding discussion regarding 10.7 GHz, the behavior of

the 19.35 GHz and 37.0 GHz TBs as ice and liquid are separately withheld from

the RTE calculation are represented in Figures 4.13 and 4.14, respectively.

While the emission signature in panel (a) of both figures is contaminated by

ice scattering, the removal of the ice leads to the well-defined emission

signature shown in panel (b). Similarly the removal of all liquid from the

TBs in panel (c) removes the liquid emission signature seen at low graupel

IWP values, resulting in panel (d) where a brief ice emission signature at low

graupel IWP values turns over into a drop off of TB due to scattering. Finally

the effects on 85.5 GHz are given in Figure 4.15. Unlike that for the lower

frequencies, Figure 4.15 (b) shows that the TB signal does not rise as a function

of IWP due to emission, but becomes immediately saturated and declines due
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to the vertical displacement of the weighting function (as previously

explained). The scattering signal due to graupel, as shown in panel (c), is

much less affected than for the other frequencies by the removal of the liquid,

as shown in panel (d), due to the fact that even small amounts of graupel

tend to obscure the underlying surface and liquid hydrometeor emission

signature.

Aside from their effects on upwelling TBs, the hydrometeors also

provide the back-scattering media for the down-looking radar. Scatter plots of

surface rain rate, rain IWP, and graupel IWP are given in Figures 4.16, 4.17,

and 4.18, respectively. One feature that stands out in these three figures is the

truncation of the reflectivities near 20 dB. This is an artifact of the

hydrometeor profiles present in the hurricane simulation database, where the

equivalent water content at each level was truncated to zero for values less

than 10-5 g m -3, in order to avoid computational problems in some of the

RTE code. This visible demarcation of reflectivities in the figures represents

the corresponding value for this minimum hydrometeor content; values

which drop below are due to attenuated signals deeper in the column.

The levels of the radar reflectivities chosen for analysis correspond to the

peak in the average hydrometeor profiles displayed in Figure 2.2 for (a) rain

(height = 0.1 krn), (b) cloud (height = 2.5 km), (c) graupel (height = 6.2 km), (d)

snow (height = 7.8 km), and (e) pristine ice (height = 11.8 km). Figure 4.16(a)

shows a good correlation between surface rain rate and near-surface

reflectivity for low values of rain rate; however for higher rain values the

rain itself attenuates the radar signal. The next higher level in panel (b)

mitigates the attenuation effect somewhat, as the amount of rain between

that level and the radar above is less and hence the attenuation is reduced.
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Figure 4.16: Scatterplot of database values of surface rainrate vs. radar
reflectivity at heights of (a) 0.1 km, (b) 2.5 km, (c) 6.2 kmn, (d) 7.8 kin, and (e)
11.8 km.
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Figure 4.17: Scatterplot of database values of rain 1WP vs. radar reflectivity at

heights of (a) 0.1 km, (b) 2.5 kin, (c) 6.2 kmn, (d) 7.8 km, and (e) 11.8 km.
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Also that level is low enough that the amount of rain present there is

still relatively representative of the rain reaching the surface. As the level

rises above the freezing level into the graupel, as shown in panel (c), the

reflectivity is less representative of the surface rain rate as the radar is

sampling mainly ice and not liquid; this correlation is reduced as the level is

raised further, as shown in panels (d) and (e).

Nearly the same explanation can be applied to Figure 4.17, which plots

the rain IWP at the same five levels. The main difference is that the apparent

correlation of reflectivity is better for rain IWP than for surface rain rate as the

reflectivity level is increased. This is because the total amount of ice is more

highly correlated with rain IWP than it is with surface rain rate; hence the

reflectivity just above the freezing level, shown in panel (c), is more

representative of the total amount of rain in the column than it is for just the

portion reaching the surface. However that correlation is destroyed when the

level of the cirrus anvil is reached, as seen in panel (e). These analyses

indicate that while a good reflectivity agreement between the retrieval

solution and the measurements can lead to a good estimate of the total rain

IWP, the estimate of the amount of liquid falling out as rain at the surface

may not be as good, which is important as many studies use surface rain

gauge measurements as ground truth in the verification of rainfall retrievals.

Hence it should be noted that the surface rain rate may not be the best

verification tool for evaluating the quality of a retrieval of the entire

precipitating column. Furthermore as TBs appear to provide a better measure

of the column-integrated hydrometeor amounts, a combined retrieval should

improve the estimate of the total amount of rain in the column and the
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surface rain rate, when compared to a reflectivity-only retrieval using

measurements from a down-looking radar at an attenuating frequency.

The relationship of graupel IWP with reflectivities at the same five

levels is given in Figure 4.18. As previously explained, the total graupel IWP

is more representative of the total rain in the column than in the rain

reaching the surface, as indicated further by the reflectivities in panels (a) and

(b). As might be expected, the reflectivities at levels above the rain (and its

associated attenuation effect on the radar returns) and in the graupel are

correlated best with graupel IWP, as shown in panels (c) and (d) of Figure 4.18.

Hence agreements between reflectivities in the ice layer between

measurements and the solution profiles, as well as the 85.5 GHz TB matchup,

are both important in the combined retrieval in diagnosis of the amount of

ice present in the column. Furthermore the nature of range-gated radar

sampling can diagnose the vertical placement of the large ice particles,

whereas the 85.5 GHz TB measurement is only effective as inferring the total

integrated amount. Hence the combined retrieval should then be able to

improve the vertical distribution and IWP of the ice retrievals over that by

independent TB-only or radar-only techniques.

In the discussions of the previous figures, the correlation between the

hydrometeors and their corresponding TBs and Zs were discussed in

qualitative terms from purely visual observations. Figure 4.19 displays these

correlations in quantitative terms in the form of bar graphs, with the actual

numbers provided in Table 4.1 For example, while it was clear from Figures

4.8 and 4.12 that 10.65 GHz provides a good estimate of the surface rain rate

and rain IWP, the functional relationship is not linear and hence standard

linear correlation will underestimate this high degree of correlation.
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Table 4.1: Correlations between TBs/Reflectivities and (a) Surface Rainrate,
(b) Rain IWP, and (c) Graupel IWP.

--------- Correlation Coefficient------
(a) Surface Rainrate linear log added

10.7 GHz TB 0.874 0.936 0.062
19.3 GHz TB 0.644 0.891 0.247
37.0 GHz TB 0.156 0.456 0.300
85.5 GHz TB 0.467 0.502 0.035
Ref at hgt = 0.1 km 0.189 0.616 0.427
Ref at hgt = 2.5 km 0.459 0.759 0.300
Ref at hgt = 6.2 km 0.441 0.576 0.135
Ref at hgt = 7.8 km 0.409 0.498 0.089
Ref at hgt = 11.8 km 0.331 0.359 0.028

(b) Rain IWP linear log added

10.7 GHz TB 0.868 0.984 0.116
19.3 GHz TB 0.539 0.850 0.311
37.0 GHz TB 0.024 0.285 0.261
85.5 GHz TB 0.611 0.643 0.032
Ref at hgt = 0.1 km 0.015 0.364 0.349
Ref at hgt = 2.5 km 0.365 0.680 0.315
Ref at hgt = 6.2 km 0.536 0.653 0.117
Ref at hgt = 7.8 km 0.545 0.597 0.052
Ref at hgt = 11.8 km 0.460 0.463 0.003

(c) Graupel IWP linear log added

10.7 GHz TB 0.546 0.710 0.164
19.3 GHz TB 0.217 0.479 0.262
37.0 GHz TB 0.391 0.391 0.000
85.5 GHz TB 0.833 0.955 0.122
Ref at hgt = 0.1 km 0.030 0.132 0.102
Ref at hgt = 2.5 km 0.227 0.436 0.209
Ref at hgt = 6.2 km 0.518 0.713 0.195
Ref at hgt = 7.8 km 0.643 0.788 0.145
Ref at hgt = 11.8 km 0.826 0.831 0.005

Note: The hydrometeor quantities are correlated with the TBs/Reflectivities
by (a) a linear fit and then by (b) a logarithmic fit; the extra correlation gained
by the log fit is given as (c) correlation "added" to the linear fit.
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One practical solution is to measure the correlation with respect to a

smooth function which best fits the data. This would measure the departure

of the points from this functional curve instead of from the best linear fit. A

logarithmic transform of the hydrometeors and rain rate was performed,

which reasonably "straightened" the curves present in the relationship

between these quantities and the TBs and Zs. The linear correlation using

both the original values and log-transformed values are given in Figure 4.19

and Table 4.1 for the correlation of TBs and Zs with (a) surface rain rate, (b)

rain IWP, and (c) graupel IWP. The results are consistent with the previous

qualitative observations, namely that 10.65 GHz TB gives the highest

correlation with both rain IWP and surface rain rate, and that the best

correlation from a reflectivity value is up in the rain layer rather than near

the surface. In a similar analysis, Smith et al. (1997) showed that the

correlation between the surface rain rate and the unattenuated near-surface

reflectivity (as opposed to the attenuated reflectivities used here and which

are measured by a radar) provided an almost perfect 0.99 correlation

coefficient. This demonstrates one of the drawbacks of an attenuating radar,

namely that large rain amounts can attenuate the signal, resulting in lower

reflectivity values which are indicative of smaller rain amounts in an

unattenuated environment.

The analysis continues in a similar fashion for ice, where Figure 4.19(c)

and Table 4.1 show that 85.5 GHz TB provides the best correlation with

graupel IWP, followed by reflectivities in the ice layer. The correlation with

graupel IWP calculated for the reflectivity at 11.8 km was higher than for the

lower levels nearer the graupel peak, even though Figure 4.18 clearly

illustrates more scatter around a central curve defining the relationship for
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this higher level. This unexpected correlation difference is due to the fact that

the curve for the higher level is more linear, and the log transform does not

sufficiently straighten the curves at the 6.2 and 7.8 km levels. A better

transform or functional fit would overcome this disparity.

4.3 TB Manifolds (AMPR Data vs. Model Simulations)

Another method by which to explore the combined behavior of the

hurricane simulations and the forward RTE model is by the analysis of

scatterplots of all TBs with one another. Analysis of these TB vs. TB

scatterplots was dubbed TB "manifold" analysis by Panegrossi et al. (1997).

The TB manifold is defined as the N-dimensional space enclosing the TBs,

where each dimension is given by one of N TB frequencies. Panegrossi et al.

(1997) performed a TB manifold analysis with a study using SSM/I TB data

and a lower resolution version of the hurricane simulation used in this

research. A similar analysis using the AMPR passive brightness temperature

data sets from TOGA COARE was performed by McGaughey et al. (1996) and

McGaughey and Zipser (1996), which focused on observations of convective

and stratiform precipitation in TOGA COARE, respectively.

The model TB manifold uses TBs produced by inputting each set of

microphysical hydrometeor profiles from the hurricane simulation into the

unified RTE model, as described in section 2.1. Figure 4.20 illustrates the TB

manifold produced by using the original hydrometeor profiles from the

hurricane simulation; several features are worth discussing. The plot of 19.3

GHz TB vs. 10.7 GHz TB (lower left) shows the relatively dominant emission

signatures at both lower frequencies. The drop in 19.3 GHz TB for some cases

of large 10.7 GHz TB reflects the limited effects of scattering at 19.3 GHz, as
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discussed in the previous section. The scattering signature is enhanced as

higher frequencies are viewed. In the plots for 85.5 GHz TB vs. 19.3 GHz TB

(upper left), 85.5 GHz TB vs. 37.0 GHz TB (upper right), and for 37.0 GHz TB

vs. 19.3 GHz (middle right), the scattering signature of the higher frequencies

can be seen as a scattering "tail". Finally no discernible pattern emerges from

the plot of 85.5 GHz TB vs. 10.7 GHz TB (middle left), due to the poor

correlation between the emission-dominant signature at 10.7 GHz and the

scattering-dominant signature at 85.5 GHz.

Previous discussions of the methodology explained that the original

simulation hydrometeors were fit to Legendre Polynomial structure

functions prior to calculation of TBs and Zs for the initial guess database.

Figure 4.21 illustrates TB manifold for TBs produced from structure function-

transformed hydrometeors. As previously shown in Figure 4.5, hydrometeor

fitting produces little change to the TBs, so it is no surprise that the structure

function-transformed TB manifold (as shown in Figure 4.21) is nearly

identical to the non-transformed TB manifold (as shown in Figure 4.20). If

there had been significant differences, it would have indicated the structure

function transform process altered the relationship between the different TBs,

which in turn would alter the matchups in the selection of the first guess

during the retrieval. Since this was not the case, it is further confirmation

that structure function fitting of the hydrometeor profiles does not produce

adverse effects on the initial guess selection within the combined retrieval.

Now that an interpretation of the shapes and structures of the model

manifolds have been discussed, the next step is to compare them to the actual

TB measurements, which for this study were taken airborne AMPR TBs. The

AMPR data TB manifold from the TOGA COARE cases used in this research
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is shown in Figure 4.22. The most noticeable difference between the model

and AMPR data TB manifolds is the lesser ice scattering tails in the AMPR

data manifold. While the tails at 85.5 GHz TB vs. 19.3 GHz TB (upper left)

and 85.5 GHz TB vs. 37.0 GHz TB (upper right) are clearly present for the

AMPR data, it is very small for the 37.0 GHz TB vs. 19.3 GHz (middle right)

cross-section and non-existent for the 37.0 GHz TB vs. 10.7 GHz (bottom right)

panel. This can likely be explained by the fact that the meteorological

conditions present during TOGA COARE did not include the large amounts

of ice present in some profiles of the hurricane simulation.

When using a simulation database in the retrieval process, one of the

goals is that the database represent reality. Ideally one would want every

possible combination of TBs and Zs present in actual instrument

measurements to be contained within the database. If this is the case, the

measured data TB manifold should be fully contained within the model TB

manifold from the database; otherwise the model simulation is not

representing all the conditions present in the measurements. To aid in the

determination of this case, the perimeter of AMPR TB manifold for each

cross-section shown in Figure 4.22 is traced in bold, and presented in Figure

4.23. This AMPR data manifold perimeter from Figure 4.23 is then overlaid

on the model manifold from Figure 4.21, with the final product given as

Figure 4.24. The areas within the border of the AMPR data manifold which

are not represented by the model indicate TB combinations not produced in

the simulation. While visual inspection indicates general agreement, two

main discrepancies are noted and are discussed in the following section. The

technique used to adjust the model TBs, resulting in a better match between

the data and model TB manifolds, are also discussed.
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Hurricane Sim. TBs (all hydrometeors)
(RTE using TOGA COARE atm. profile)
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Figure 4.20: TB manifold from the simulation database using original

database hydrometeor profiles.
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Hurricane Sim. LP-fitted TBs (all hydrometeors)
(RTE using TOGA COARE atm. profile)
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Figure 4.21: TB manifold from the simulation database using Legendre

polynomial-fitted database hydrometeor profiles.
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TOGA COARE AMPR data
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Figure 4.22: TB manifold from TOGA-COARE AMPR TB measurements.
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TOGA COARE AMPR data
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Figure 4.23: TB manifold from TOGA-COARE AMPR TB measurements,

where the perimeter enclosing the manifold has been traced in bold.
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4.4 Model TB Bias Adjustments

The match between the model simulation and measured TB manifolds

can be seen from Figure 4.24, where the border of the AMPR TB manifold is

overlaid on the model TB manifold. While several areas of mismatch can be

detected, two stand out from the rest. First, the manifolds clearly indicate that

the AMPR 10.7 GHz TBs are warmer than the model 10.7 GHz TB for the

lower-emission/lower-TB range, possibly due to a calibration problem with

the AMPR instrument during the TOGA COARE experiment [Spencer (1996),

personal communication]. This is best illustrated by the TB manifold

mismatches for the 19.3 GHz TB vs. 10.7 GHz (lower left) and 37.0 GHz TB vs.

10.7 GHz (lower right) cross-sections. For the RTE calculations in this study

using TOGA-COARE mean surface and atmospheric conditions as input, the

bias between the AMPR and model 10.7 GHz TB at the low end was found to

be -10 K. In order to adjust the model 10.7 GHz TBs to match the

measurements from the AMPR, an adjustment of 10 K was added to the

model 10.7 GHz TB where total rain IWP = 0, no adjustment is added for TBs

corresponding to rain IWP > 20 kg m- 2 , and a linearly-interpolated

adjustment is made for TBs falling between zero and the upper threshold.

McGaughey et al. (1996) report a similar discrepancy at 10.7 GHz between

AMPR measurements and model-produced TBs, and made a similar bias

adjustment. While from the TB manifold comparisons there also appear to

be biases present at the other frequencies, their magnitudes are much less

than that for 10.7 GHz, and consequently no adjustment is attempted.

The second discrepancy involves the scattering tail at 37.0 GHz, as best

seen in the 85.5 GHz TB vs. 37.0 GHz TB (upper right) cross-section. The

difference here is that the model produces a higher scattering depression at
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37.0 GHz due to ice than is observed by the AMPR. While this difference

affects only a small portion of the data points from TOGA COARE, as shown

by the AMPR TB manifold in Figure 4.22, the discrepancy for those cases is

large enough that an adjustment was deemed appropriate. The adjustment

procedure is similar to that performed for 10.7 GHz, except that in this case

the graupel IWP is used to scale the amount of adjustment. As the

discrepancy between the model and AMPR TB manifolds at 37.0 GHz

increased with increasing ice scattering, the amount of adjustment was set as

a function of graupel IWP. A logarithmic function was found to provide the

best adjustment, where no adjustment was made for graupel IWP = 0, and

larger adjustments were made for increasing graupel IWP.

The TB manifold of the bias-adjusted simulation database is presented in

Figure 4.25, and the same TB manifold is overlaid with the AMPR TB

manifold perimeter in Figure 4.26. The improvements over the original

model TB manifold are clearly seen, where the emission signature at 10.7

GHz and scattering signature at 37.0 GHz more closely match the performance

of the AMPR instrument. Hence the selection of the first guess within the

retrieval should lead to better matches, and in turn improve the quality of the

rainfall retrievals. The retrieval algorithm is now complete and optimized

for retrieval tests using TOGA COARE data, as presented in the next chapter.
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Hurricane Sim. LP-fitted TBs (all hydrometeors)
(RTE using TOGA COARE atm. profile)
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Figure 4.24: TB manifold from the simulation database using Legendre
polynomial-fitted database hydrometeor profiles, overlaid with the TOGA-
COARE AMPR TB manifold perimeter.
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Bias Adjusted, LP-fitted, Sim. TBs (all Hy7d)
(RTE using TOGA COARE atm. profile)
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Figure 4.25: TB manifold from the simulation database using Legendre
polynomial-fitted database hydrometeor profiles, which have been adjusted
to match biases between it and the TOGA-COARE AMPR TB manifold.
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Bias Adjusted, LP-fitted, Sim. TBs (all Hyd)
(RTE using TOGA COARE atm. profile)
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Figure 4.26: TB manifold from simulation database using Legendre
polynomial-fitted, bias-adjusted database hydrometeor profiles, overlaid with
the TOGA-COARE AMPR TB manifold perimeter.
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CHAPTER 5

RETRIEVAL RESULTS

5.1 Individual TOGA-COARE Test Cases

As described in section 3.2, the TOGA-COARE field experiment

measured tropical precipitation and other atmosphere-ocean processes in the

western Pacific warm pool region. In addition to a network of ship-board

sensors and buoys within TOGA-COARE's Intensive Flux Array (IFA), there

were also several flights of research aircraft flying out of Townsville,

Australia, including coordinated flights of a NASA ER-2 and DC-8. While the

ER-2 and DC-8 collectively deployed several instruments, only measurements

from the AMPR and ARMAR were used as input for the combined retrieval

tests. Portions of coordinated flights from four days during TOGA-COARE

were selected for this study: 4 Feb, 8 Feb, 20 Feb, and 22 Feb 1993.

The first ER-2/DC-8 coordinated flight selected for retrieval tests was

from 4 Feb 93. The data used from this flight were from two passes over the

developing Tropical Cyclone Oliver, centered approximately at 150 S, 150' E.

The second coordinated flight focused again on Tropical Cyclone Oliver,

which by this date had begun to weaken. Two passes over the storm, centered

approximately at 19' S, 1520 E, were selected for retrieval tests. The third

coordinated flight used, from 20 Feb 93, focused on a mesoscale convective

system located at approximately 60 S, 1600 E. Four separate passes over the

area were selected for retrieval tests. The fourth coordinated flight selected

was from 22 Feb 93, which focused on a convective squall line and
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surrounding areas near 90 S, 1590 E. Three passes over this region were

selected for retrieval tests. Note that for all the cases, a pass is defined as a

portion of a flight in which the flight paths of both aircraft are straight and

level.

Contoured TB images for the full swath of AMPR measurements are

given in Figures 5.1-5.11 for the 11 passes described above. Due to the

disparity in slant paths for off-nadir views between the AMPR and ARMAR

caused by their different altitudes (as explained in section 3.2), only nadir

measurements from these two instruments were used as input to the

combined retrieval. Nadir-only AMPR TB plots are given in the top panels of

Figures 5.12-5.22, which correspond to the values along the center of the TB

maps in Figures 5.1-5.11. The corresponding ARMAR reflectivity profiles at

nadir are displayed as contoured images in the bottom panels of Figures 5.12-

5.22. Note that for all these ARMAR images, vertical lines in the ARMAR

contours are caused by missing data at that location.

The combined data sets of AMPR and ARMAR nadir measurements, as

displayed in Figures 5.12-5.22, were then used as input to the combined

retrieval algorithm. Each paired set of AMPR TBs and ARMAR Zs from the

pass were input sequentially, and processed to generate solution hydrometeor

profiles, surface rainfall rates, and precipitation type, as described in Chapter 2.

Retrieval results and other selected quantities are plotted for the 11 flight

passes in Figures 5.23-5.33. Each figure consists of 4 panels, where the

horizontal coordinate of all panels follows the equivalent ground track of the

aircraft, given as either latitude or longitude, depending on the orientation of

each particular pass.
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AMPR TB Data from TOGA-COARE ER-2 Flight
02/04/93, Pass # 1, ER-2 Time 171400-173000 UTC
10.7 GHz 19.3 GHz 37.0 GHz 85.5 GHz
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Figure 5.1: Full swath AMPR TB images from pass #1 over a developing
Tropical Cyclone Oliver on 04 Feb 93.
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AMPR TB Data from TOGA-COARE ER-2 Flight
02/04/93, Pass # 2, ER-2 Time 190000-191600 UTC
10.7 GHz 19.3 GHz 37.0 GHz 85.5 GHz
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Figure 5.2: Full swath AMPR TB images from pass #2 over a developing
Tropical Cyclone Oliver on 04 Feb 93.
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AMPR TB Data from TOGA-COARE ER-2 Flight
02/08/93, Pass # 1, ER-2 Time 204500-210500 UTC
10.7 GHz 19.3 GHz 37.0 GHz 85.5 GHz

210500

__ 210000

205500

205000

204500
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Figure 5.3: Full swath AMPR TB images from pass #1 over a weakening
Tropical Cyclone Oliver on 08 Feb 93.
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AMPR TB Data from TOGA-COARE ER-2 Flight
02/08/93, Pass # 2, ER-2 Time 213200-215200 UTC
10.7 GHz 19.3 GHz 37.0 GHz 85.5 GHz
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Figure 5.4: Full swath AMPR TB images from pass #2 over a weakening
Tropical Cyclone Oliver on 08 Feb 93.
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AMPR TB Data from TOGA-COARE ER-2 Flight
02/20/93, -Pass # 1, ER-2 Time 222400-224000 UTC
10.7 GHz 19.3 GHz 37.0 GHz 85.5 GHz
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Figure 5.5: Full swath AMPR TB images from pass #1 over a mesoscale
system on 20 Feb 93.
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AMPR TB Data from TOGA-COARE ER-2 Flight
02/20/93, Pass # 2, ER-2 Time 224500-230100 UTC
10.7 GHz 19.3 GHz 37.0 GHz 85.5 GHz
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Figure 5.6: Full swath AMPR TB images from pass #2 over a mesoscale
system on 20 Feb 93.

108



AMPR TB Data from TOGA-COARE ER-2 Flight
02/20/93, Pass # 3, ER-2 Time 230300-232300 UTC

10.7 GHz 19.3 GHz 37.0 GHz 85.5 GHz
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Figure 5.7: Full swath AMPR TB images from pass #3 over a mesoscale
system on 20 Feb 93.
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AMPR TB Data from TOGA-COARE ER-2 Flight
02/20/93, Pass # 4, ER-2 Time 233000-234600 UTC
10.7 GHz 19.3 GHz 37.0 GHz 85.5 GHz
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Figure 5.8: Full swath AMPR TB images from pass #4 over a mesoscale
system on 20 Feb 93.
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AMPR TB Data from TOGA-COARE ER-2 Flight

02/22/93, Pass # 1, ER-2 Time 212400-214400 UTC

10.7 GHz 19.3 GHz 37.0 GHz 85.5 GHz
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Figure 5.9: Full swath AMPR TB images from pass #1 over a squall line on

22 Feb 93.
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AMPR TB Data from TOGA-COARE ER-2 Flight
02/22/93, Pass # 2, ER-2 Time 214600-215000 UTC
10.7 GHz 19.3 GHz 37.0 GHz 85.5 GHz
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Figure 5.10: Full swath AMPR TB images from pass #2 over a squall line on
22 Feb 93.
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AMPR TB Data from TOGA-COARE ER-2 Flight
02/22/93, Pass # 3, ER-2 Time 215800-221400 UTC
10.7 GHz 19.3 GHz 37.0 GHz 85.5 GHz
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Figure 5.11: Full swath AMPR TB images from pass #3 over a squall line on
22 Feb 93.

113



C) EY
(z 0C0

r4 0
U-

0 0z

cz)
P64)

en -
CP\ cu P

P4)

cjt
P4)

0 -1

00

cz

114W4



E E

'-4 14

cu

(14 0

N ~.0

cIz

I N-7 ~
0-q C

UL

115 ;4 CN



W -x t

Cz >

C

s cz

CY

0-
~~ C

Nrj0
116d



LE

0t 0

a)

0%0

LH

00
11 C



0 000

0

CqC

wS

U

CN

a)z

a) e4
Elq

118



E

a al

C> C> t

- cJ

w 3t
C- 0)PCr

Nl E

.0 P4
w:-

0 4i

10

119



U)

N C

U1 cz

P4 E-4

ZU
= 

- cn

0

r-4 0 0q

0

120)



Es E

0 C

UU

10

rs--

UL

121



E E

C%

00

cqj

0

C', P4.C

0< N
(-~ s-~ 6

o7:5

F r-TC,'

12



f..L......L...I..L..* I I I IY

N UN

C4

0 03

cln

'-4 Q)) 0

C:C

0 Cln
0.N

9 "0

P4j
P4C

00

'-4;-

UO

123



C> ko

000
0

N3 0)

0 C

ccz
eq (n

0

C-4-

r4 4-.

124



04 Feb 93, Pass # 1(1715-1727 UTC)
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Figure 5.23: Nadir plots from pass #1, 04 Feb 93 of (a) AMPR TBs, (b) average
ARMAR vertical velocity in the rain growth layer, (c) retrieved surface
rairirate, (d) ARMAR reflectivity at 2.5 km height, (e) total 2-way PIA, and (f)
precipitation type.
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04 Feb 93, Pass #2 (1903-1912 UTC)
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Figure 5.24: Nadir plots from pass #2, 04 Feb 93 of (a) AMPR TBs, (b) average
ARMAR vertical velocity in the rain growth layer, (c) retrieved surface
rainrate, (d) ARMAR reflectivity at 2.5 km height, (e) total 2-way PIA, and (f)
precipitation type.
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08 Feb 93, Pass #1 (2044-2104 UTC)300-
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Figure 5.25: Nadir plots from pass #1, 08 Feb 93 of (a) AMPR TBs, (b) average
ARMAR vertical velocity in the rain growth layer, (c) retrieved surface
rainrate, (d) ARMAR reflectivity at 2.5 km height, (e) total 2-way PIA, and (f)
precipitation type.
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08 Feb 93, Pass #2 (2133-3151 UTC)
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Figure 5.26: Nadir plots from pass #2, 08 Feb 93 of (a) AMPR TBs, (b) average
ARMAR vertical velocity in the rain growth layer, (c) retrieved surface
rainrate, (d) ARMAR reflectivity at 2.5 km height, (e) total 2-way PIA, and (f)
precipitation type.
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20 Feb 93, Pass #1 (2224-2239 UTC)
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Figure 5.27: Nadir plots from pass #1, 20 Feb 93 of (a) AMPR TBs, (b) average
ARMAR vertical velocity in the rain growth layer, (c) retrieved surface
rainrate, (d) ARMAR reflectivity at 2.5 kma height, (e) total 2-way PIA, and (f)
precipitation type.
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20 Feb 93, Pass #2 (2247-2257 UTC)
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Figure 5.28: Nadir plots from pass #2, 20 Feb 93 of (a) AMPR TBs, (b) average
ARMAR vertical velocity in the rain growth layer, (c) retrieved surface
rainrate, (d) ARMAR reflectivity at 2.5 km height, (e) total 2-way PIA, and (f)
precipitation type.
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20 Feb 93, Pass #3 (2305-2321 UTC)
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Figure 5.29: Nadir plots from pass #3, 20 Feb 93 of (a) AMPR TBs, (b) average
ARMAR vertical velocity in the rain growth layer, (c) retrieved surface
rainrate, (d) ARMAR reflectivity at 2.5 km height, (e) total 2-way PIA, and(f
precipitation type.
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20 Feb 93, Pass #4 (2330-2345 UTC)
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Figure 5.30: Nadir plots from pass #4, 20 Feb 93 of (a) AMPR TBs, (b) average
ARMAR vertical velocity in the rain growth layer, (c) retrieved surface
rainrate, (d) ARMAR reflectivity at 2.5 km height, (e) total 2-way PIA, and (f)
precipitation type.
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22 Feb 93, Pass # 1 (2125-2142 UTC)
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Figure 5.31: Nadir plots from pass #1, 22 Feb 93 of (a) AMPR TBs, (b) average
ARMAR vertical velocity in the rain growth layer, (c) retrieved surface
rainrate, (d) ARMAR reflectivity at 2.5 km height, (e) total 2-way PIA, and (f)
precipitation type.
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22 Feb 93, Pass # 2 (2147-2149 UTC)
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Figure 5.32: Nadir plots from pass #2, 22 Feb 93 of (a) AMPR TBs, (b) average
ARMAR vertical velocity in the rain growth layer, (c) retrieved surface
rainrate, (d) ARMAR reflectivity at 2.5 km height, (e) total 2-way PIA, and (f)
precipitation type.
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22 Feb 93, Pass # 3 (2209-2214 UTC)
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Figure 5.33: Nadir plots from pass #3, 22 Feb 93 of (a) AMPR TBs, (b) average
ARMAR vertical velocity in the rain growth layer, (c) retrieved surface
rainrate, (d) ARMAR reflectivity at 2.5 km height, (e) total 2-way PIA, and (f)
precipitation type.
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The top panel is a plot of the 10.7 GHz and 85.5 GHz AMPR TB

measurements, similar to those displayed in Figures 5.12-5.22. The second

panel displays two quantities, the first being a plot of the surface rainfall rate

generated by the combined retrieval. The second is a plot of the average

ARMAR Doppler velocity in the precipitation growth layer, where the

growth layer is defined as having a thickness of 2 km and bounded at the

bottom by the melting level. The standard sign convention for Doppler

velocity is used, where velocities away from the radar are defined as positive.

Hence for the case of a downlooking radar, positive values are downward,

and indicate that the hydrometeors (which are the backscatterers for the radar

signal) are falling in the layer.

The third panel in the series of TOGA-COARE retrieval figures also

displays two quantities. The first is the ARMAR reflectivity at 2.5 kin, a level

roughly centered between the surface and the melting level, where the radar

returns are due to liquid rain. The second is a plot of 2-way PIA, as measured

by the RTE model in the following way. After the optimization is complete,

the solution hydrometeors are re-run through the unified RTE model, where

the model is reset to correct for attenuation, resulting in the calculation of an

equivalent unattenuated Z profile. This is compared to the original solution

Z profile, which is attenuated by the RTE model to match the response of the

real radar, which is subject to attenuation. The difference between attenuated

and unattenuated reflectivity at the surface between these two calculations is

a measure of the attenuation between the surface and the radar, and hence is

equivalent to total 2-way PIA.

Finally the fourth and bottom panel in these series of figures is a plot of

precipitation type. At each point where a hydrometeor profile retrieval is
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calculated in the above panels, the measured TBs and Zs are used to estimate

precipitation type, by the method described in section 2.7. The diagnosed type

for the case is then indicated as a point on the plot, unlike the top three

panels which are all line plots.

The discussion that follows will analyze the retrieval results from each

of the four TOGA-COARE flights used in this study. As each flight contains

multiple passes over generally the same precipitating region, the analysis for

each flight will center on a single pass to avoid a largely redundant

discussion. Furthermore there are many features common between all four

flights, so to limit repetitive analysis, the first flight discussed will offer an

exhaustive explanation for these common features, while the discussion for

the remaining three flights will be more brief and focus on outstanding

features not observed in the other flights.

5.1.1 Retrieval Results from 08 Feb 93 flight

While 04 Feb 93 was the first flight to be used in this study, the

discussion begins out of sequence to focus on pass #1 from 08 Feb 93, as this

pass contains numerous interesting features which lends itself to an in-depth

analysis. A weakening Tropical Cyclone Oliver is recognizable in the AMPR

TB swath images displayed in Figure 5.3, with the eye being nearly circular

and located near the middle of each image. As the eye is relatively devoid of

hydrometeors and associated emission contributions to the TBs, the eye

appears colder in the first three panels (10.7, 19.3, and 37.0 GHz) than the

surrounding areas where hydrometeors are present. In contrast, the TBs in

the eye for 85.5 GHz give the relative TB maximum, as the emission signal

from the ocean surface yields warmer TBs than from hydrometeors which
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depress the 85.5 GHz TBs by scattering, as discussed in Chapter 4. The

situation is reversed for the eyewall, which appears just below the eye for the

images in Figure 5.3. The convective cells within the eyewall have more

liquid and frozen hydrometeors than surrounding areas. Hence the emission

by liquid hydrometeors causes the eyewall TBs to be warmer than the

surroundings at 10.7 and 19.3 GHz, while the ice scattering effect causes the

85.5 GHz TBs to be colder. Note that these two effects are both important at

37.0 GHz, with the net effect being slightly colder TBs in the eyewall. Similar

cases of warm emission signatures for the low frequencies, collocated with

cold TBs due to scattering at the high frequencies, are also seen in the

convective lines in the lower half of the panels in Figure 5.3, as well as for

areas of precipitation seen in the figures for the other passes.

The corresponding nadir plots of the AMPR TBs for this case, along with

the aligned nadir ARMAR Z profiles, are given in Figure 5.14. The peaks and

valleys in the AMPR TBs along the top portion of the figure correspond to the

warm and cold contours, respectively, as described for the TB full-swath

images in Figure 5.3. Several features are notable in the ARMAR Z contours,

beginning with the reflectivity peak near the melting level at 4.5-5.0 km,

which gives the appearance of a bright band and is evident throughout much

of the pass. While a bright band is usually associated with stratiform

conditions, Rinehart (1991) has noted that decaying convection can also

exhibit a bright band, which may be the situation in this case of a dissipating

tropical storm. Another notable feature is that the gaps in the precipitation

field, as seen by vertical shafts of reflectivity minima in the image, are well

aligned with valleys in the low frequency TB plots. Likewise areas of more

intense precipitation, as noted by the vertical shafts of reflectivity maxima in
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the image, are well aligned with peaks in the low frequency TB plots due to

emission, and valleys in the high frequency TB plots due to scattering.

Alignment of these features not only indicates behavior consistent with that

predicted by the model tests discussed in Chapter 4, but it also indicates that

the process of aligning the AMPR and ARMAR measurements was

successful. This will be an important aspect for TRMM, as the TMI and PR

will use different scanning modes, and hence will not be coincident at nadir

as were the AMPR and ARMAR in the TOGA-COARE flights. Finally of note

is the vertical tilt of the areas of reflectivity maxima due to radar returns from

hydrometeors, which corresponds to the vertical tilt of typical convective cells

due to vertical wind shear.

One final feature evident in the ARMAR Z contours is with the area of

missing data in the center of the plot. Since the combined retrieval was only

processed at points where both AMPR TBs and ARMAR Zs were available,

there are no combined retrieval results for this portion of the pass, or for

similar examples found in the other flight passes. While such problems

associated with real data can be handled in a variety of ways in research

studies such as this, the issue of missing or garbled data will have to be

addressed more comprehensively for the operational TRMM algorithm,

which is planned to be processed in near real-time.

The TB and Z data are then provided as input to the combined retrieval

algorithm, with retrieval results for this case being displayed in Figure 5.25,

along with selected input TB and Z values. The top panel displays the nadir

plot of 10.7 GHz and 85.5 GHz TBs, with their respective emission peaks and

scattering depressions corresponding to the eyewall and convective lines as

previously discussed. The second panel overlays the average ARMAR

139



Doppler velocity in the rain growth layer, along with the retrieved

instantaneous rainfall rate at the surface. The 10.7 GHz peaks due to

hydrometeor emission correspond well with the peaks in rainfall rate at the

surface, as expected. The magnitudes of the rainrates are also important. The

rainrates peak near 80 mmohr-1 in the eyewall and in other areas of intense

convection, but drop to small values (< 10 mmohr -1 ) in areas between the

convective cells. While the Doppler velocities display variability, they are

generally positive (downward), indicating the hydrometeors are falling out as

expected in a precipitating region.

The next plot displays the ARMAR reflectivity at 2.5 km, overlaid with a

model-derived estimate of PIA, as previously explained. The peaks in

reflectivity at 2.5 km, a level where rain drops are the primary backscatterers,

are aligned with the peaks in 10.7 GHz TB and the retrieved surface rain rate,

consistent with previous discussions and analyses. The peaks of PIA are

similarly aligned, which is expected as rain drops provide the primary cause

of attenuation to the radar returns at 13.8 GHz. Note also that the magnitude

of PIA is on the order of 10 dB in the area of the convective cells, indicating

that the total hydrometeor column can significantly attenuate the 13.8 GHz

radar signal at low levels in the atmosphere. As these lower reflectivity

values near the surface can be misinterpreted as lower hydrometeor values,

the inclusion of TBs, which provide a good estimate of total hydrometeor

content, in a combined retrieval should provide more reliable results when

compared to a radar-only rtrieval, especially at an attenuating radar

frequency such as 13.8 GHz.
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Figure 5.34: Reflectivity profiles of the combined and passive-only first
guesses overlaid with the measured ARMAR profile, given for 4 selected
points from the 08 Feb 93, pass #1 case.

141



The precipitation type, calculated using the technique described in

section 2.7, is given in the bottom panel of Figure 5.25 for this case. The peaks

in the first three panels, already described to be the eyewall and lines of

convection, are properly diagnosed as convective. Other points not meeting

these TB thresholds but exhibiting a bright band are labeled as stratiform, with

the rest being tagged as unknown. As the TBs and Zs of the eyewall and

convective lines could be considered as textbook examples of convective

signatures, their designation as convective by the precipitation type algorithm

is given with a high degree of confidence. However the diagnosis of the

bright band cases as stratiform presents two plausible explanations; (1) the

diagnosis of the precipitation is correct, indicating a case of convection

embedded within a stratiform field, or (2) the diagnosis is incorrect and

indicates a misclassification of dissipating convection as stratiform rain.

Either explanation is plausible for this case, and hence demonstrates one

aspect of the challenging nature of precipitation classification.

One final point regards the inherent non-uniqueness of TB-only

retrievals, as explained in previous sections. To illustrate the effectiveness of

the combined approach at mitigating this problem, example first guess

retrievals from four points from pass #1 of the 08 Feb flight are displayed in

Figure 5.34. For each point, the Z profile from both the combined and

passive-only first guesses are overlaid with the ARMAR measurements.

While the modeled TBs from the combined and passive-only first guesses are

nearly equivalent, the vertical structures were found to be significantly

different in 3 of the 4 cases. The first case, shown in panel (a) of Figure 5.34, is

a convective line located away from the eye. Whereas the Z profile from

combined first guess roughly matches the shape and vertical domain of the
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ARMAR measurements, the TB-only first guess contains a much deeper layer

of hydrometeors and effectively doubles the column depth indicated by the

radar. A similar result occurs for points in the eyewall and in the eye, shown

in Figure 5.34 (c) and (d), respectively. These three cases provide typical

examples of the manifestation of non-uniqueness problems inherent to TB-

only retrievals, as expressed by poor agreements between measured and

modeled Z profiles.

While TB-only retrievals can produce solutions whose vertical structure

is inconsistent with coincident radar measurements, this is not always the

case. For a point selected between convective cells, shown in Figure 5.34 (b),

the Z profiles from the TB-only and combined first guesses are much more

consistent with one another than was the case for the other examples. For

this case the combined retrieval does not improve the consistency of vertical

structure as much, but neither does it degrade the solution. Hence overall

combined retrieval is shown to generate hydrometeor solution profiles that

are more consistent both in vertical structure (as measured by the Zs) and

total integrated hydrometeor content (as measured by the TBs), an

improvement when compared to passive-only and radar-only techniques.

5.1.2 Retrieval Results from 4 Feb 93 flight

While the 08 Feb 93 case viewed Tropical Cyclone Oliver during a

weakening period, the 04 Feb passes viewed Oliver in the development stage

and sampled more intense convection. A good example of such an intense

convective area is seen in Figure 5.2, and is on the left hand side and centered

in time (near 1908 UTC) on each AMPR TB panel. Note that the 10.7 GHz TB

peaks at a value > 275 K, an indication of a near saturated emission event.
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Likewise the 85.5 GHz TB drops to a value < 95 K, a significant scattering

depression indicating the presence of a large amount of ice. Since this area

was off-nadir, it was not a part of the nadir data input to the combined

retrieval. However the area still represented a local precipitation maximum

at nadir, as seen in the nadir TB and Z plots in Figure 5.13, where the TB plots

indicate a TB maximum at the low frequencies and a minimum at 85.5 GHz.

Similarly there is a strong reflectivity maximum at this location, which

extends throughout a deep layer of the atmosphere. This region is

represented in the results in Figure 5.24 by a sharp peak in surface rainrate

and PIA, by large variability in the Doppler velocity consistent with the effects

of convective updrafts and downdrafts, and is correctly diagnosed as

convective by the precipitation type algorithm. This event is described in

further detail by McGaughey et al. (1996).

5.1.3 Retrieval Results from 20 Feb 93 flight

The 20 Feb 93 flight measured a mesoscale system which contained a

number of intense convective cells embedded within a field of lightly

precipitating stratiform rain, as described by McGaughey and Zipser (1996).

The system is seen in the full-swath AMPR TB maps (Figures 5.5-5.8) as a

local maximum at the lower frequencies. While strong convective cells were

present, they were mostly missed by the flight tracks of the aircraft. The

strongest convective cell measured by the AMPR was in pass #1 (Figure 5.5),

and is recognized by the emission peak at 10.7 GHz and the ice scattering

depression at 85.5 GHz. The signature of this cell was exhibited in Figure 5.16

by a broad depression at 85.5 GHz due to scattering and a broad peak at the

other frequencies due to emission. Note that unlike some of the examples
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previously described for Tropical Cyclone Oliver, the TB signature at 37.0 GHz

was one of an emission peak rather than a scattering depression, indicating

the lack of enough ice in this case to effectively depress the 37.0 GHz TBs.

Likewise the reflectivity signatures for this convective area indicate a local

reflectivity maximum, most intense from the melting layer to the surface.

Similarly for the results displayed in Figure 5.27, this region is indicated by a

local maximum of retrieved surface rainrate and PIA, which are well aligned

with the 10.7 GHz peaks and 85.5 GHz valleys.

While other areas for this flight lack a bright band and give some

indications of the possibility of convection, none surpass the threshold TB

values in the precipitation type algorithm indicating strong convection.

Consequently, this cell provided the only instances of convection diagnosed

by the precipitation type algorithm on this flight day, as seen in Figure 5.27.

The precipitation type for all other passes (Figures 5.28-5.30) were diagnosed as

only stratiform or unknown. The portions classified as stratiform follow

from the brightband conditions evident in Figures 5.16-5.19, which were

present throughout most of each pass. Also note that the magnitudes of

surface rainrate were much less than those for the 04 Feb and 08 Feb retrievals

for Tropical Cyclone Oliver, and consistent with that of a lightly precipitating

stratiform region.

5.1.4 Retrieval Results from 22 Feb 93 flight

The last case is that of a convective squall line from 22 Feb 93, which has

been the subject of several studies, including Trier et al. (1994), Jorgensen et al.

(1994), Lemone et al. (1994), McGaughey et al. (1996), and McGaughey and

Zipser (1996). The squall line appears in the AMPR TB maps (Figures 5.9-5.11)
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as a line of TB maxima for 10.7 and 19.3 GHz and as a line of TB minimum

for 85.5 GHz, signatures similar to those of convection previously discussed

for the other flights. Similarly in the nadir plots (Figures 5.20-5.22), it appears

as a TB peak for the low frequencies, a TB valley for 85.5 GHz, and a deep local

reflectivity maximum. Likewise for the results (Figures 5.31-5.33), it appears

as a maximum in surface rainrate and PIA, as an area of large variability in

Doppler vertical velocity, and is correctly diagnosed as convective by the

algorithm, all of which are consistent with previous discussions of

convective regions for the other flights.

The major feature evident in both Figure 5.9 and 5.11, but not seen in the

previous examples, is the warm TB maxima located near the top of the 10.7,

19.3, and 37.0 GHz panels. In addition to its very warm TBs, its sharp edges

and tight TB gradients distinctively identify this area as land. Had these

points not been screened from the nadir AMPR data used as input to the

combined retrieval, the very warm TBs at the lower frequencies would have

been interpreted as large emission signatures and the retrieval would have

generated large rainrates at this location, demonstrating the importance of

proper land screening to the retrieval process.

The preceding case analyses indicate reasonable agreement between

measured TB and Z responses to liquid and frozen hydrometeors and that

predicted by the RTE model tests. Similarly the retrieved surface rainrates

and precipitation types for these individual cases are consistent with what

would be expected from previous discussion. In order to facilitate further

interpretation of the TOGA-COARE retrievals and to quantify the results, all

retrieval cases were combined into a single bulk set of paired measurements

(AMPR TBs and ARMAR Zs) and retrieved quantities (hydrometeor IWP,
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surface rainrate, and precipitation type). A bulk statistical analysis as it related

to the optimization, hydrometeors and rainrates, and precipitation type is

presented in the sections that follow.

5.2 Effects of Optimization on Retrieval Results

The analysis begins by quantitatively assessing the value added to the

retrievals by the structure function optimization as represented by a reduction

of the combined error function, which quantifies the improvement in the

matchup between the retrieved and measured TBs and Zs. Secondly selected

case studies are discussed to illustrate the differences in the retrieved rainrate

profiles and surface rainrates due to the effect of optimization, as well as

rainrate differences between combined and single-instrument retrievals.

5.2.1 Effect on Error Function Reduction

Since there is no validation data for the actual hydrometeor

concentration profiles or surface rain rates, the value of the optimization

must be evaluated indirectly. As the optimization is specifically designed to

improve the combined agreement between the measured AMPR TBs and

ARMAR Zs with their retrieval counterparts (as calculated by the error

function given in section 2.4), a quantitative evaluation of the improvement

of TB and Z matchup provided by the optimization is given in Figure 5.35.

The error improvement is expressed in terms of normalized error, defined as

the error from the optimized solution divided by the error from the first

guess. Hence normalized errors less than one indicate improvements over

the first guess provided by the optimization, while normalized errors greater

than one indicate degradations to the first guess. As the optimization is
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designed to terminate immediately if the combined error of the first guess

cannot be reduced, the normalized combined error is never degraded, and

hence has a maximum value of one as shown in Figure 5.35 (a).

The average value of the normalized combined error for all TOGA-

COARE retrievals was found to be 0.81, a -20% reduction in combined error

over the first guess. Figure 5.35 (b) and (c) displays the corresponding

independent improvement for the TBs and Zs, which show an average

improvement of -31% and -8% improvement, respectively. As both the TBs

and Zs are individually improved, it indicates that the optimization generates

a retrieval more consistent with both the TB and Z measurements than that

provided by the initial guess. Also while the optimization can only reduce

the combined error, the independent TBs and Zs can be degraded for some

cases, as seen in the values of normalized error greater than one for the

histograms in Figure 5.35 (b) and (c).

Finally it is noted that on average the TBs are improved more than the Zs.

This is primarily due to the fact that the reflectivity error function calculates

the RMS difference between the ARMAR measurements and the retrieved Zs

for the entire column. When the top of the measured and retrieved columns

are not coincident, reflectivity differences near the upper hydrometeor

boundary can exceed 20 dBZ, leading to large RMS differences at that level.

As the current implementation of the optimization does not allow the top

boundaries to move from their initial positions as determined from the first

guess, this large RMS difference does not change for most cases, leading to a

smaller improvement in the Z matchup when compared to that for the TBs.

One other potential contributing factor may be the combined error function

itself. If the normalizing constraints between the TBs and Zs
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Figure 5.36: Histogram of optimization processing statistics: (a) number of
optimization steps, and (b) number of optimization direction changes.

are not precise, the combined error function can overly weight either the TBs

or Zs over the other, as described in section 2.4. However other algorithm

improvements, such as that suggested regarding the upper hydrometeor

boundaries, need to be completed before it can be determined if the error

function weighting is really playing a significant role in this aspect of the

retrieval results.
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While the optimization has been shown to provide an improved

matchup between the measured and retrieved TBs and Zs, there is a

computational price to be paid. Figure 5.36 (a) and (b) gives a histogram of the

total number of optimization steps and direction changes (as described in

section 2.5), respectively, for the TOGA-COARE retrievals. Note that each

optimization step requires one forward RTE calculation, while each direction

change calculates a derivative and hence requires two RTE calculations for

each structure function coefficient used in the optimization. As the forward

RTE calculations are the most computationally intensive part of the

algorithm, the optimization process, as currently implemented, adds

computational overhead to the retrieval.

5.2.2 Effect on Retrieved Rainrate Values

Now that the overall statistical improvements of the agreement between

measured and modeled TBs and Zs have been quantified, additional insight

can be gained by an examination of the changes in the vertical hydrometeor

structure due to optimization, as well as changes provided by combined

retrieval when compared to TB-only and Z-only retrieval. While the

retrieval process and the optimization has an effect on all hydrometeor types,

this discussion will focus on rain rate, the main quantity of interest in most

precipitation studies. Recalling from previous descriptions of the retrieval

process, the retrieved rain hydrometeor profiles are input into a gravity-

fallout rainfall submodel, described in section 2.6, which produces retrieved

profiles of rainrate. Hence the retrieved rainrate profiles are used in the

following discussion to illustrate the effects of combined retrieval and

optimization on the retrieved vertical structure.
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The first case to be analyzed is pass #1 from 08 Feb 93, which was

examined in detail in section 5.1.1. The rainrate profiles for this case are

illustrated in Figure 5.37, beginning with those from the combined and Z-

only first guesses, as shown in panels (b) and (c), respectively, and their

corresponding surface rainrates, shown in panel (a). Perhaps the most

important feature noted is the good correlation apparent between the

combined and Z-only first guesses, indicating good alignment between the

PMW and radar measurements. While the location of the maximum

rainrate areas, given by the eyewall and convective lines as discussed in

section 5.1.1, are well correlated, the magnitudes of the maximum rainrates

vary between the two retrieval types, most notably near the surface. This can

result in large surface rainrate differences in the heavily raining areas, as seen

in Figure 5.37 (a).

While the combined and Z-only first guess rainrate profiles exhibit

relatively large magnitude differences, the rainrate profiles from the TB-only

first guess and combined optimized solution do not show as large of

departures from the combined first guess. Hence the rainrate profiles for the

TB-only first guess and combined solution are displayed as differences from

the combined first guess, and are given in Figure 5.37 (e) and (f), respectively.

Similarly the corresponding surface rainrates are also shown as differences

from the combined first guess values, and are given in Figure 5.37 (d). The

rainrate differences between the TB-only and combined first guesses, shown

in panel (e), have several interesting features, the most important of which is

the vertical distribution of the rainrate differences. In most cases, positive

rainrate differences at some levels are coupled with negative rainrate

differences at other levels. This indicates that the rainrates present in the TB-
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only first guess are effectively being vertically redistributed to better match the

Zs within the combined retrieval. As many of the largest changes are found

near the surface, the corresponding surface rainrate differences, as seen in

panel (d), often approach 30 mm-hr 1. However the resulting changes due to

optimization, as seen in panel (f), are not as pronounced. While the rainrate

changes are usually <10 mmohr -1, some cases in the heavily raining areas

approach 20 mm.hr "1, not an insignificant amount. Still the most important

feature is that positive rainrate changes at one level are often coupled by

negative changes at another, a reflection of the redistribution of the vertical

rain structure by the optimization process.

Another example is given in Figure 5.38 for pass #2 of 04 Feb 93, a case

described at length in section 5.1.2. As all of the preceding discussion for the

08 Feb pass applies to this case as well, only a single distinguishing feature

will be discussed, namely the retrievals surrounding the convective region at

time 1907-1908 UTC in the figure. What distinguishes this region is the large

magnitude of the rainrate differences between the combined first guess and

combined optimized solution, seen in panel (f). For the retrievals from this

convective area, positive rainrate differences of -20 mm*hr-1 near the surface

are accompanied by negative rainrate differences of -20 mm.hr -1 near the

melting level, indicating a fairly large transfer of rain from one level to

another by the optimization process. Hence while the optimization normally

makes modest adjustments to the hydrometeor profiles to improve the

matchup between the measured and modeled TBs and Zs, there are situations

when this procedure can make significantly larger modifications, accounting

for cases of error improvement much greater than the average 20%

improvement reported in the previous sub-section.
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Figure 5.37: Retrieved rainrate profiles for 08 Feb, pass #1 shown for (b) combined first guess
and (c) Z-only first guess rain rates, with corresponding surface rainrates shown in panel (a);
rainrate differences with the combined first guess are shown for the (e) TB-only first guess and
(f) combined solution rainrates, with corresponding surface rainrates shown in panel (d).
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4 Feb 1993 Pass #2
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Figure 5.38: Retrieved rainrate profiles for 04 Feb, pass #2 shown for (b) combined first guess
and (c) Z-only first guess rain rates, with corresponding surface rainrates shown in panel (a);
rainrate differences with the combined first guess are shown for the (e) TB-only first guess and
(f) combined solution rainrates, with corresponding surface rainrates shown in panel (d).
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5.3 Statistical Summary of Retrieval Results

Now that the value of the optimization has been assessed, the next step

is to evaluate the consistency of the retrieved quantities with expected results.

This begins by directly comparing selected TB and Z relationships to

hydrometeor IWP, as seen from the bulk TOGA-COARE results, with those

previously accomplished from RTE model tests in Chapter 4. The first is

given in Figure 5.39 (a), which depicts AMPR 10.7 GHz TB vs. retrieved rain

IWP. The emission curve is well represented in this plot, where the 10.7 GHz

TB reaches a saturation value near 280 K when the rain IWP approaches 20

kg.m - 2 . The equivalent plot from the RTE tests is given in Figure 4.8 (b),

which has nearly identical saturation values. The main difference is that the

maximum value of retrieved rain IWP is < 20 kg-m -2 for the TOGA-COARE

cases, while the hurricane simulation contained examples of rain IWP

approaching 60 kg.m -2 . As the TOGA-COARE cases did not include an

intense hurricane, this result is not surprising.

The same argument follows for the relationship of AMPR 85.5 GHz TB

with retrieved graupel IWP, depicted in Figure 5.39 (b), when compared to the

same relationship seen in the RTE model tests, as given in Figure 4.11 (c).

The 85.5 GHz TB values decrease as graupel IWP increases due to scattering

depression, as seen in both the retrieval results and model tests. Again the

biggest difference is the maximum amount of graupel IWP present. For the

TOGA-COARE retrievals, the maximum IWP was -6 kgom - 2 , whereas for

some cases in the hurricane simulation, the graupel IWP approached values

of 50 kg.m "2 . This indicates that TOGA-COARE does not contain as much ice

as can be produced by a model simulation of an intense hurricane, which like

the preceding result concerning liquid is to be expected.
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The relationship of radar Zs in the rain layer with rain IWP is given in

Figure 5.39 (c) for the bulk TOGA-COARE results, and in Figure 4.17 (b) for the

RTE model tests, which produce nearly identical curves. Similarly the

relationship of radar Zs in the ice layer above the freezing level with graupel

IWP is given in Figure 5.39 (d) for the bulk TOGA-COARE results, and in

Figure 4.18 (c)-(d) for the RTE model tests, which also produce nearly identical

curves. Aside from the differences in the maximum rain and graupel IWP

as previously discussed, the main difference is in the amount of scatter in the

retrieval plots compared with the corresponding examples from the RTE

tests. This should be expected due to the fact that all microphysical properties

of the hydrometeors (e.g., drop size distribution, particle shapes, etc.) are

identical for all cases in the hurricane simulation, where these properties are

undoubtedly variable in the real atmosphere. As the radar reflectivity values

are sensitive to the microphysical characteristics of the backscatterers [Battan

(1973)], it is should be expected that the relationship of retrieved hydrometeor

IWP to the radar Zs is not as smooth and well-defined as for a controlled

model simulation.

Due to the correlation between hydrometeor concentrations and surface

rainrates, as discussed in Chapter 4, a comparison between retrieved surface

rainrates and TB/Z measurements should provide similar results as those

just discussed for the hydrometeor IWPs. Instead of using a scatter plot as in

the previous discussion, various quantities were sorted according to rainrate

values, and the average from each 10 mmohr-1 bin is plotted in Figure 5.40.

The 10.7 and 85.5 GHz TBs are plotted as a function of rainrate in Figure 5.40

(a). The increasing value of 10.7 GHz with increasing rainrate is consistent

with the similar relationship for rain IWP and 10.7 GHz TB presented in
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Figure 5.39 (a), due to the correlation between total rain IWP in the column

and the amount falling out to the surface. Similarly the decreasing value of

85.5 GHz with increasing rainrate is consistent with that shown between

graupel IWP and 85.5 GHz TB shown in Figure 5.39 (b), due to the generally

good correlation between liquid and frozen hydrometeor concentrations, as

discussed in Chapter 4. Also the noisy nature of the plots at high rainrate

values (> 60 mmohr -1) is due to the fact that the sample size for these bins is

small. There are only a small number of cases with very large rainrates found

in the TOGA-COARE retrieval tests, such that the average within those bins

can be effected by only a few extreme data points.

As discussed in the previous case study analyses, total PIA of the radar

signal is due mainly to the rain, and hence is correlated well with rain IWP,

surface rainrate, and 10.7 GHz TB. Hence the increasing value of PIA with

increasing rainrate seen in Figure 5.40 (b) is as expected. The relationship

between average Doppler vertical velocity in the rain growth layer with

retrieved rainrate is not as well behaved, as seen in Figure 5.40 (c). At low

rainrate values, most cases are stratiform as previously discussed. As the

rainrate is increased, the average hydrometeor fall speed as indicated by the

average Doppler velocity also increases as expected. However at larger

rainrates, the relationship breaks down. This is due to two factors: (1) the

large rainrates are primarily in convective cells, where the actual vertical

velocity distribution cannot be expressed by a well-defined Gaussian shape, as

it contains both updrafts and downdrafts, and (2) the sample size of the

highest rainrates within the flight passes is small, as previously discussed.
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Figure 5.40: Values averaged over 10 mm/hr bins of retrieved surface
rainrate for (a) AMPR TBs, (b) retrieved PIA, and (c) average ARMAR vertical
velocity in rain growth layer, where all averaged values are plotted vs.
retrieved surface rainrate.
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5.4 Results for Precipitation Classification Algorithm

Having verified the consistency of retrieved surface rainrates with the

TBs and Zs, it is useful to analyze the statistical distribution of the rainrate

values themselves, as presented in Figure 5.41 (a). The distribution contains

mostly small rainrate values, trailing off to a small number of high values.

As such a log-normal rainrate distribution has been measured in previous

rainfall studies [e.g., Goldhirsch (1983) and Kedem et al. (1990)], this result is

expected. The next step is to analyze the results separately by precipitation

type, as determined by the precipitation type algorithm, which classified 10.3%

of the TOGA-COARE cases as convective, 45.5% as stratiform, and the

remaining 44.2% as unknown, as shown in Figure 5.41 (b).

Recall that in the TB threshold technique for diagnosing convection,

given in equation (19) in section 2.7, previously published observed threshold

values were required to be exceeded by 10 K in order to ensure that cases

diagnosed as convective were done so with a high degree of confidence.

Furthermore cases selected as convective under this scheme could be

considered as intense convection, with less intense convective cases failing to

meet the threshold tests being diagnosed as either unknown or stratiform.

For purposes of comparison, the threshold values in equation (19) were

relaxed by 10 K, and the TOGA-COARE cases were re-diagnosed for

precipitation type using these new threshold values, which yielded the

following distribution by precipitation type: 15.3 % convective, 43.8 %

stratiform, and 40.9 % unknown. Hence an additional 5% from the total

number were diagnosed as convective, which could be referred to as cases of

"probable" convection. As these additional convective cases came from cases

previously tagged as unknown (3.3%) and stratiform (1.7%) using the original

161



threshold values, it is clear that many cases can exhibit properties consistent

with both convective and stratiform precipitation, and as such the inclusion

of a significant portion in an unknown category is a prudent option.

After grouping the retrievals in these three categories, the average

rainrates for each are shown in Figure 5.41 (c). The average rainrate for the

convective cases was 50 mm.hr- 1, while the stratiform cases had an average

of ~9 mm.hr-1 . This is consistent with the typically larger rainrates in intense

convection, when compared with the smaller rainrates in a typical stratiform

region. Note that non-raining cases, defined here as rainrates < 0.1 mmohr 1 ,

were not included for any of the distributions displayed in Figure 5.41.

After the cases were separated by precipitation type, the rainrate

distributions were then calculated independently for each category to

determine their consistency with expected values, as seen in Figure 5.42. The

stratiform rainrate distribution is as expected, with a log-normal distribution

containing mostly small rainrate values. The unknown category displays

similar characteristics, except with the inclusion of slightly larger values,

which is expected as the unknown category undoubtedly contains cases which

are convective but not intense enough to meet the threshold criteria for

convection specified in the algorithm. Finally, the rainrate distribution for

the convective cases exhibits a peak at -50 mm-hr -1. Since the algorithm

attempted to classify as convective only intense convective cells, it was

anticipated that the peak in the rainrate values would be at a larger value, and

not at zero as it is for the log-normal distribution for mostly stratiform rain.
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Figure 5.41: Retrieved surface rainrate and precipitation type distributions: (a)
distribution of retrieved surface rainrate, (b) distribution of retrieved
precipitation type, and (c) average rainrate by precipitation type. Non-raining
cases (retrieved surface rainrate < 0.1 mm/hr) not included.
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Figure 5.42: Distribution of retrieved surface rainrate separated by
precipitation types (a) unknown, (b) stratiform, and (c) convective. Non-
raining cases (retrieved surface rainrate < 0.1 mm/hr) not included.
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Figure 5.43: Average of retrieved cloud, rain, and graupel profiles separated
by precipitation types (a) unknown, (b) stratiform, and (c) convective.
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In addition to surface rainrates, the retrieved hydrometeor profiles

separated by precipitation type was also explored. The comparison is given by

the average retrieved hydrometeor profile for each type, as seen in Figure

5.43. The main difference between the average convective and stratiform

hydrometeor profile is one of magnitude, where the peak value of both rain

and graupel equivalent water content is ~5 times larger for convection than

for stratiform rain, which is consistent with the known physical differences

between stratiform regions and intense convective cells. As the unknown

category contains convective cells (with greater hydrometeor content than the

average stratiform case), non-raining cases (with little or no hydrometeors),

and stratiform cases without a brightband, the net effect is that its average

profile does not drastically depart from that of the stratiform category for the

circumstances present in the TOGA-COARE dataset.

The preceding analyses indicated that the precipitation type classification

scheme is physically consistent with such properties as surface rainrate and

hydrometeor concentration. A similar analysis was also conducted for

vertical velocity. Unlike the TRMM PR, the ARMAR is a coherent radar and

measures Doppler velocity, which indicates the vertical motion of the

hydrometeors. A histogram of average ARMAR hydrometeor velocities for

the rain growth layer is given separately for each precipitation category from

the TOGA-COARE retrievals in Figure 5.44. Note that the sign of the Doppler

velocities have been reversed to indicate the motion of the hydrometeors in

the atmospheric standard sign convention (positive upward/negative

downward). The hydrometeor vertical velocities for precipitation diagnosed

as stratiform, shown in Figure 5.44 (b), is the type of distribution expected

from the conceptual theory described in section 2.7, namely small magnitude
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downward velocities on the order of the terminal velocities of snow and

aggregates. Likewise the hydrometeor vertical velocity distribution of the

cases diagnosed as convective also follows observations and conceptual

theory, as it contains larger downward velocities and some upward velocities,

corresponding to the updrafts and downdrafts known to exist in convective

systems. The greater magnitudes of the fall speeds, compared to the

stratiform distribution, are indicative of the higher concentrations of graupel

and other large ice particles found in convection. Finally the hydrometeor

vertical velocity distribution of the unknown precipitation cases, given in

Figure 5.44 (a), appears to have values consistent with a mixture of

convective and stratiform cases.

While the diagnosis by the algorithm of precipitation type is consistent

with the distributions of hydrometeor vertical velocities measured from the

ARMAR, this is not the case for the distributions of first guess atmospheric

vertical velocities from the simulation database. Figure 5.45 depicts the

distribution by precipitation type of the first guess vertical velocities averaged

over the rain growth layer. Unlike the case for the ARMAR Doppler-

measured hydrometeor vertical velocities, the first guess atmospheric vertical

velocity distributions offer no separation by precipitation type, and hence

would clearly not be useful for the determination of precipitation type.

However as the quality of cloud models improve, this technique may merit

another evaluation at some future date.

Whereas the growth mechanism of hydrometeors is governed by the

atmospheric vertical velocities, Doppler velocities indicate the vertical

motion of the hydrometeors, not the atmosphere. However from Doppler-

measured hydrometeor fall speeds, the atmospheric vertical can be estimated
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if one assumes an average terminal fall velocity for the hydrometeors, as

expressed by the following equation:

vatm (estimated) Vhyd (Doppler-measured) - vterm (assumed) (20)

Using this equation with the convective cases from the retrieval tests, the

estimated atmospheric vertical velocity distribution is given in Figure 5.46,

where a hydrometeor terminal velocity of 3 mos "1 is assumed.

This is compared with the atmospheric vertical velocity distribution of

selected convective cases from the National Hail Research Experiment given

in Figure 5.47, where the atmospheric vertical velocities where directly

measured from aircraft instruments [see Fankhauser (1981)]. The reasonably

good agreement between these two independent distributions indicates that a

reasonable estimate of atmospheric vertical velocity can be obtained from

Doppler vertical velocities, provided that the assumed value of hydrometeor

terminal fall velocity is also reasonable. Note that the hydrometeor terminal

fall velocity is dependent on the drag coefficient of the hydrometeor, which is

dependent on the mass, density, and shape of the hydrometeors, which in

turn are related to precipitation type. Hence the combination of indirect

measures of precipitation type and Doppler hydrometeor vertical velocity

information can provide a potential improvement to the diagnosis of

precipitation type, which previews a possible enhancement to combined

precipitation retrieval should a coherent radar capable of measuring vertical

velocity ever be deployed on a satellite.
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Figure 5.44: Distribution of average ARMAR hydrometeor vertical velocity
in the rain growth layer separated by precipitation types (a) unknown, (b)
stratiform, and (c) convective.
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Figure 5.45: Distribution of average first guess simulation atmospheric
vertical velocity in the rain growth layer separated by precipitation types (a)
unknown, (b) stratiform, and (c) convective.
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Figure 5.46: Atmospheric vertical velocity distribution for cases diagnosed as
convective from TOGA-COARE retrieval tests. Atmospheric velocities
estimated from ARMAR Doppler hydrometeor fall velocities and assuming
hydrometeor terminal fall speed = 3 m/s. Bin size = 0.5 mm/hr.
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Figure 5.47: Atmospheric vertical velocity distribution for cases of significant
cloud water concentration from the National Hail Research Experiment.
Atmospheric velocities measured with aircraft instruments. Distribution
given for measurements from 0-50, 50-100, and more than 100 mb above
cloud base. Bin size = 0.5 mm/hr. From Fankhauser et al. (1982).
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CHAPTER 6

DISCUSSION AND CONCLUSIONS

The Tropical Rainfall Measuring Mission (TRMM) satellite, designed to

measure tropical rainfall and its effects on climate and atmospheric

circulations, will deploy a sensor suite containing a passive microwave

(PMW) radiometer and precipitation radar, a first for an earth-viewing

satellite. In anticipation of the launch of TRMM, a combined radar-

radiometer precipitation profile retrieval algorithm has been developed

which uses aircraft PMW radiometer brightness temperature (TB) and radar

reflectivity (Z) measurements as input. The TB and Z measurements are

compared with values from a database of profiles produced by a cloud model

simulation of a tropical storm. Database values that most closely match the

measurements, as measured by a combined normalized RMS error function,

are selected as the initial guess of the solution profiles. The initial guess

profiles, represented as a series of structure functions, are modified in an

optimization scheme which uses the structure function coefficients as the

optimization control parameters, yielding a solution set of hydrometeor

profiles whose TB and Z signatures agree more closely with the

measurements than did the first guess. The solution hydrometeor profiles

are then input to gravity fallout equations to generate solution rain rate

profiles and surface rainrates. Finally the TB and Z measurements are input

into a combined precipitation type algorithm, which identifies stratiform rain
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by a radar-derived bright band calculation and convective rain by TB

threshold values.

For a series of retrieval tests, using aircraft radar and PMW radiometer

measurements from TOGA-COARE as input, the combined algorithm

generated solution hydrometeor profiles and surface rainrates that were

found to be consistent with model tests and previous observations. The

relationship between the retrieved hydrometeors and the TB and Z

measurements yielded nearly identical functional relationships as those from

simulation and RTE model tests. Likewise the retrieved surface rainrates

were correlated well with the TBs and retrieved radar PIA in a manner

consistent with the model tests. Also the retrieved surface rainrate values

followed a log-normal distribution, as found in previous observational

studies.

While these results validate the physical consistency of the retrieval

method with respect to theoretical considerations, model tests, and

observations, it should be noted that these general conclusions could also be

drawn from a combined retrieval without optimization. Hence it is

important to note the specific value added to the retrieval results by the

optimization procedure. For the TOGA-COARE retrieval tests, the

optimization scheme provided an average 20% improvement over the first

guess in the combined agreement between the measured and retrieved TBs

and Zs. While this average improvement represents modest adjustments to

the hydrometeor profiles when averaged over all the retrieval tests, it is

noted that under some circumstances the effect of optimization can be much

more pronounced. One case detailed in this study, illustrating a retrieved

rain hydrometeor profile by an equivalent rainrate profile, showed that
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rainrates on the order of 20 mmohr-1 can be added to the first guess at some

levels, while similar amounts are subtracted from other levels, indicating the

ability of the optimization to redistribute significant hydrometeor amounts in

order to improve agreement between the measured and modeled TBs and Zs.

The improved agreement is a result of the non-linear optimization scheme, a

process which generates a new set of profiles which are independent from

those in the database, a feature which distinguishes it from other techniques.

In contrast, an alternate technique for profile-based retrieval is the

Bayesian approach, which weights profiles in a database using a priori

probability density functions constrained by statistical information from the

cloud and RTE models and the hydrometeor distributions, and applies the

weights to the database profiles to generate a solution. The Bayesian method

has been applied to profile retrieval using PMW-only, radar-only, and

combined measurements, as described by Evans et al. (1995), Haddad et al.

(1996), Kummerow et al. (1996), and Olson et al. (1996). While these methods

are computationally efficient as they do not require iterative forward RTE

calculations, their solutions are ultimately weighted combinations of the

database profiles, and hence not independent from the simulation database.

In a sense, this is similar to the first-guess procedure of the optimization-

based combined algorithm, which effectively assigns a weight of 1.0 to the

single set of database profiles which provide the best match between

measured and simulated TBs and Zs, and a weight of 0.0 to the rest. This

suggests the possibility of a hybrid technique which could combine some of

the advantages of both methods. The Bayesian method generates solution

profiles with improved statistical properties when compared to any

individual set of profiles from the database. Hence the solution profiles from
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a Bayesian algorithm could provide an improved initial guess to an

optimization-based retrieval algorithm, whereby the optimization process

would improve the agreement between the measured and simulated

quantities from that of the Bayesian first guess.

Another issue regarding combined retrieval addressed by this study is

the determination of precipitation type. The precipitation type algorithm

categorized observed rain events as either convective, stratiform, or

unknown, based on the measured TB and Z signatures. The retrieved

rainrate distributions, calculated separately for each category, were found to be

consistent with distributions calculated from surface rain rate observations.

Likewise the distribution of hydrometeor fall velocities by precipitation type,

determined from coincident ARMAR Doppler velocities, also exhibited

characteristics consistent with previous observations. As the vertical velocity

field is the underlying dynamical factor governing precipitation growth,

which is what fundamentally distinguishes between stratiform and

convective precipitation and the associated heating structure, this result

affirms the sound nature of the precipitation type scheme. Furthermore the

analysis demonstrates the usefulness of Doppler velocities in diagnosing

precipitation type, which suggests that the addition of a coherent radar to

future satellite platforms could provide improvements to current techniques.

One final issue regards the usefulness of the basic approach of combined

retrieval when compared to single-instrument retrievals. There currently

exist a number of radar-only and PMW-only techniques to retrieve

hydrometeor profiles and the corresponding surface rain rates, and while

many perform well under certain conditions, each has specific limitations

due to the physical nature of the measuring instrument. The vertical
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resolution of TB-only retrievals are limited due to the fairly broad and

extended weighting functions of the TB measurements, while the accuracy of

the rain rate magnitudes from Z-only retrievals are limited by the sensitivity

of the Zs to the assumptions regarding the particle size distributions and

other microphysical properties of the backscattering hydrometeors.

This study has demonstrated that by combining both types of

measurements within a unified retrieval framework, some of the problems

specific to each type can be reduced. One example is that while PMW

radiometer measurements respond well to the total integrated amount of

hydrometeors within a precipitating column, they can be relatively

insensitive to the vertical hydrometeor distribution under some

circumstances. This leads to non-uniqueness problems in PMW-only

retrievals, namely that different vertical hydrometeor distributions can lead

to nearly equivalent TBs. In contrast, the reflectivities from a down-looking

radar, by the very nature of their range-gated samples, provide better

information on vertical structure.

It was demonstrated for several TOGA-COARE test cases that by

incorporating TBs and Zs into a combined retrieval, the non-uniqueness

problems inherent to TB-only retrievals can be reduced. Similarly it was

shown that the magnitudes of the rainrates derived from Z-only retrievals,

which are sensitive to microphysical assumptions, can be significantly

impacted by the inclusion of TBs within a combined retrieval. These and

other examples presented within this study demonstrate the fundamental

improvement of combined retrieval, namely its synergistic ability to plumb

the strengths of both the active-only and passive-only methods, while at the

same time reducing their weaknesses.
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